File size: 4,257 Bytes
1deea7f
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
import './style.css';

import { env, AutoModel, AutoProcessor, RawImage } from '@xenova/transformers';

env.backends.onnx.wasm.wasmPaths = 'https://cdn.jsdelivr.net/npm/onnxruntime-web@1.17.1/dist/';
env.backends.onnx.wasm.numThreads = 1;

// Reference the elements that we will need
const status = document.getElementById('status');
const container = document.getElementById('container');
const canvas = document.getElementById('canvas');
const outputCanvas = document.getElementById('output-canvas');
const video = document.getElementById('video');
const sizeSlider = document.getElementById('size');
const sizeLabel = document.getElementById('size-value');
const scaleSlider = document.getElementById('scale');
const scaleLabel = document.getElementById('scale-value');

function setStreamSize(width, height) {
    video.width = outputCanvas.width = canvas.width = Math.round(width);
    video.height = outputCanvas.height = canvas.height = Math.round(height);
}

status.textContent = 'Loading model...';

// Load model and processor
const model_id = 'Xenova/modnet';
let model;
try {
    model = await AutoModel.from_pretrained(model_id, {
        device: 'webgpu',
        dtype: 'fp32', // TODO: add fp16 support
    });
} catch (err) {
    status.textContent = err.message;
    alert(err.message)
    throw err;
}

const processor = await AutoProcessor.from_pretrained(model_id);

// Set up controls
let size = 256;
processor.feature_extractor.size = { shortest_edge: size };
sizeSlider.addEventListener('input', () => {
    size = Number(sizeSlider.value);
    processor.feature_extractor.size = { shortest_edge: size };
    sizeLabel.textContent = size;
});
sizeSlider.disabled = false;

let scale = 0.5;
scaleSlider.addEventListener('input', () => {
    scale = Number(scaleSlider.value);
    setStreamSize(video.videoWidth * scale, video.videoHeight * scale);
    scaleLabel.textContent = scale;
});
scaleSlider.disabled = false;

status.textContent = 'Ready';

let isProcessing = false;
let previousTime;
const context = canvas.getContext('2d', { willReadFrequently: true });
const outputContext = outputCanvas.getContext('2d', { willReadFrequently: true });
function updateCanvas() {
    const { width, height } = canvas;

    if (!isProcessing) {
        isProcessing = true;
        (async function () {
            // Read the current frame from the video
            context.drawImage(video, 0, 0, width, height);
            const currentFrame = context.getImageData(0, 0, width, height);
            const image = new RawImage(currentFrame.data, width, height, 4);

            // Pre-process image
            const inputs = await processor(image);

            // Predict alpha matte
            const { output } = await model({ input: inputs.pixel_values });

            const mask = await RawImage.fromTensor(output[0].mul(255).to('uint8')).resize(width, height);

            // Update alpha channel
            const outPixelData = currentFrame;
            for (let i = 0; i < mask.data.length; ++i) {
                outPixelData.data[4 * i + 3] = mask.data[i];
            }
            outputContext.putImageData(outPixelData, 0, 0);

            if (previousTime !== undefined) {
                const fps = 1000 / (performance.now() - previousTime);
                status.textContent = `FPS: ${fps.toFixed(2)}`;
            }
            previousTime = performance.now();

            isProcessing = false;
        })();
    }

    window.requestAnimationFrame(updateCanvas);
}

// Start the video stream
navigator.mediaDevices.getUserMedia(
    { video: true }, // Ask for video
).then((stream) => {
    // Set up the video and canvas elements.
    video.srcObject = stream;
    video.play();

    const videoTrack = stream.getVideoTracks()[0];
    const { width, height } = videoTrack.getSettings();

    setStreamSize(width * scale, height * scale);

    // Set container width and height depending on the image aspect ratio
    const ar = width / height;
    const [cw, ch] = (ar > 720 / 405) ? [720, 720 / ar] : [405 * ar, 405];
    container.style.width = `${cw}px`;
    container.style.height = `${ch}px`;

    // Start the animation loop
    setTimeout(updateCanvas, 50);
}).catch((error) => {
    alert(error);
});