File size: 15,300 Bytes
f89975a
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
9e8ea93
f89975a
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
767388d
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
80253fc
6a48947
a1f7c70
 
a274886
a1f7c70
f89975a
a274886
 
 
 
 
 
a1f7c70
 
 
 
a274886
 
 
 
 
 
6a48947
a274886
f89975a
6a48947
 
a274886
a1f7c70
 
f89975a
6a48947
a1f7c70
6a48947
a274886
 
 
 
 
 
a1f7c70
a274886
 
 
 
 
 
 
 
 
 
6a48947
a274886
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
6a48947
f89975a
a274886
6a48947
 
767388d
a274886
 
 
 
 
 
f89975a
 
 
a274886
f89975a
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
a1f7c70
f89975a
 
 
b91a5a5
a1f7c70
265d8d5
f89975a
c2a23ac
 
 
 
f89975a
c2a23ac
 
 
 
3feca55
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
c2a23ac
 
3feca55
 
a1f7c70
c2a23ac
 
a1f7c70
f89975a
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
import streamlit as st
import torch
import torch.nn as nn
import torch.nn.functional as F
import torchaudio
import torchaudio.transforms as T
import numpy as np
import pickle
import tempfile
import os

# Your model architecture (same as before)
class ImprovedBirdSoundCNN(nn.Module):
    def __init__(self, num_classes, dropout_rate=0.3):
        super(ImprovedBirdSoundCNN, self).__init__()
        
        self.conv1 = nn.Conv2d(1, 64, kernel_size=3, padding=1)
        self.conv2 = nn.Conv2d(64, 64, kernel_size=3, padding=1)
        self.conv3 = nn.Conv2d(64, 128, kernel_size=3, padding=1)
        self.conv4 = nn.Conv2d(128, 128, kernel_size=3, padding=1)
        self.conv5 = nn.Conv2d(128, 256, kernel_size=3, padding=1)
        self.conv6 = nn.Conv2d(256, 256, kernel_size=3, padding=1)
        
        self.bn1 = nn.BatchNorm2d(64)
        self.bn2 = nn.BatchNorm2d(64)
        self.bn3 = nn.BatchNorm2d(128)
        self.bn4 = nn.BatchNorm2d(128)
        self.bn5 = nn.BatchNorm2d(256)
        self.bn6 = nn.BatchNorm2d(256)
        
        self.pool = nn.MaxPool2d(2, 2)
        self.adaptive_pool = nn.AdaptiveAvgPool2d((4, 4))
        self.dropout = nn.Dropout(dropout_rate)
        
        self.fc1 = nn.Linear(256 * 4 * 4, 512)
        self.fc2 = nn.Linear(512, 256)
        self.fc3 = nn.Linear(256, num_classes)
        
    def forward(self, x):
        x = F.relu(self.bn1(self.conv1(x)))
        x = F.relu(self.bn2(self.conv2(x)))
        x = self.pool(x)
        x = self.dropout(x)
        
        x = F.relu(self.bn3(self.conv3(x)))
        x = F.relu(self.bn4(self.conv4(x)))
        x = self.pool(x)
        x = self.dropout(x)
        
        x = F.relu(self.bn5(self.conv5(x)))
        x = F.relu(self.bn6(self.conv6(x)))
        x = self.adaptive_pool(x)
        x = self.dropout(x)
        
        x = x.view(x.size(0), -1)
        x = F.relu(self.fc1(x))
        x = self.dropout(x)
        x = F.relu(self.fc2(x))
        x = self.dropout(x)
        x = self.fc3(x)
        
        return x

@st.cache_resource
def load_model_and_encoder():
    """Load model and label encoder with size mismatch handling"""
    device = torch.device('cpu')
    
    try:
        # Load label encoder
        with open('label_encoder.pkl', 'rb') as f:
            label_encoder = pickle.load(f)
        
        num_classes = len(label_encoder.classes_)
        print(f"Label encoder has {num_classes} classes")
        
        # Load checkpoint first to check its structure
        checkpoint = torch.load('best_bird_model_extended.pth', map_location=device, weights_only=False)
        
        # Initialize model with current number of classes
        model = ImprovedBirdSoundCNN(num_classes=107)
        current_model_dict = model.state_dict()
        
        # Get the saved state dict
        if isinstance(checkpoint, dict) and 'model_state_dict' in checkpoint:
            saved_state_dict = checkpoint['model_state_dict']
        else:
            saved_state_dict = checkpoint
        
        # Filter out mismatched layers (fc3 layer)
        filtered_dict = {}
        for k, v in saved_state_dict.items():
            if k in current_model_dict:
                if v.size() == current_model_dict[k].size():
                    filtered_dict[k] = v
                else:
                    print(f"Skipping {k}: checkpoint {v.size()} vs model {current_model_dict[k].size()}")
            else:
                print(f"Parameter {k} not found in current model")
        
        # Update model dict with compatible weights
        current_model_dict.update(filtered_dict)
        
        # Load the filtered state dict
        model.load_state_dict(current_model_dict)
        model.eval()
        
        print(f"Model loaded successfully with {len(filtered_dict)} compatible layers")
        return model, label_encoder, device
    
    except Exception as e:
        st.error(f"Error loading model: {str(e)}")
        return None, None, None

# ------------------------------------------------------------------------------------------------------------------------------
# def preprocess_audio(audio_file, sample_rate=22050, duration=5):
#     """Preprocess audio for prediction"""
#     try:
#         # Load audio
#         waveform, sr = torchaudio.load(audio_file)
        
#         # Resample if necessary
#         if sr != sample_rate:
#             resampler = T.Resample(sr, sample_rate)
#             waveform = resampler(waveform)
        
#         # Convert to mono
#         if waveform.shape[0] > 1:
#             waveform = torch.mean(waveform, dim=0, keepdim=True)
        
#         # Normalize
#         waveform = waveform / (torch.max(torch.abs(waveform)) + 1e-8)
        
#         # Pad or trim
#         target_length = sample_rate * duration
#         if waveform.shape[1] > target_length:
#             start = (waveform.shape[1] - target_length) // 2
#             waveform = waveform[:, start:start + target_length]
#         else:
#             padding = target_length - waveform.shape[1]
#             waveform = torch.nn.functional.pad(waveform, (0, padding))
        
#         # Create spectrogram
#         mel_transform = T.MelSpectrogram(
#             sample_rate=sample_rate,
#             n_fft=2048,
#             hop_length=512,
#             n_mels=128,
#             f_min=0,
#             f_max=8000,
#             window_fn=torch.hann_window,
#             power=2.0
#         )
        
#         amplitude_to_db = T.AmplitudeToDB(stype='power', top_db=80)
        
#         mel_spec = mel_transform(waveform)
#         mel_spec_db = amplitude_to_db(mel_spec)
#         mel_spec_db = (mel_spec_db - mel_spec_db.mean()) / (mel_spec_db.std() + 1e-8)
        
#         return mel_spec_db.unsqueeze(0)
    
#     except Exception as e:
#         st.error(f"Error preprocessing audio: {str(e)}")
#         return None
# ------------------------------------------------------------------------------------------------------------------------------

def preprocess_audio(uploaded_file, sample_rate=22050, duration=5):
    """Process audio using librosa - clean version without debug messages"""
    import librosa
    import numpy as np
    tmp_file_path = None
    
    try:
        # Get the raw bytes from Streamlit uploaded file
        audio_bytes = uploaded_file.getvalue()
        
        # Create a unique temporary file path
        import hashlib
        file_hash = hashlib.md5(audio_bytes).hexdigest()[:8]
        
        # Determine file extension from uploaded file name
        file_ext = uploaded_file.name.split('.')[-1].lower()
        tmp_file_path = f"/tmp/audio_{file_hash}.{file_ext}"
        
        # Write bytes to temporary file
        with open(tmp_file_path, 'wb') as f:
            f.write(audio_bytes)
        
        # Verify file was created
        if not os.path.exists(tmp_file_path) or os.path.getsize(tmp_file_path) == 0:
            return None
        
        # Load audio with librosa (no debug messages)
        waveform, sr = librosa.load(tmp_file_path, sr=sample_rate, duration=duration)
        
        # Convert numpy array to torch tensor
        waveform = torch.from_numpy(waveform).float()
        
        # Add channel dimension
        if len(waveform.shape) == 1:
            waveform = waveform.unsqueeze(0)
        
        # Normalize audio
        max_val = torch.max(torch.abs(waveform))
        if max_val > 0:
            waveform = waveform / max_val
        
        # Ensure exact duration
        target_length = sample_rate * duration
        current_length = waveform.shape[1]
        
        if current_length > target_length:
            start = (current_length - target_length) // 2
            waveform = waveform[:, start:start + target_length]
        elif current_length < target_length:
            padding = target_length - current_length
            waveform = torch.nn.functional.pad(waveform, (0, padding))
        
        # Create mel spectrogram
        mel_transform = T.MelSpectrogram(
            sample_rate=sample_rate,
            n_fft=2048,
            hop_length=512,
            n_mels=128,
            f_min=0,
            f_max=8000,
            window_fn=torch.hann_window,
            power=2.0
        )
        
        amplitude_to_db = T.AmplitudeToDB(stype='power', top_db=80)
        
        # Generate spectrogram
        mel_spec = mel_transform(waveform)
        mel_spec_db = amplitude_to_db(mel_spec)
        
        # Normalize spectrogram
        mean_val = mel_spec_db.mean()
        std_val = mel_spec_db.std()
        if std_val > 0:
            mel_spec_db = (mel_spec_db - mean_val) / std_val
        
        # Clean up temp file
        if os.path.exists(tmp_file_path):
            os.unlink(tmp_file_path)
        
        return mel_spec_db.unsqueeze(0)
        
    except Exception as e:
        # Only show error, not debug info
        st.error(f"❌ Failed to process audio file")
        
        # Clean up on error
        try:
            if tmp_file_path and os.path.exists(tmp_file_path):
                os.unlink(tmp_file_path)
        except:
            pass
        
        return None


def predict_bird_species(model, spectrogram, label_encoder, device):
    """Make prediction on spectrogram"""
    try:
        spectrogram = spectrogram.to(device)
        
        with torch.no_grad():
            outputs = model(spectrogram)
            probabilities = torch.softmax(outputs, dim=1)
            confidence, predicted = torch.max(probabilities, 1)
            
            predicted_species = label_encoder.inverse_transform([predicted.item()])[0]
            confidence_score = confidence.item()
            
            # Get top 3 predictions
            top3_probs, top3_indices = torch.topk(probabilities, 3, dim=1)
            top3_species = []
            
            for i in range(3):
                species = label_encoder.inverse_transform([top3_indices[0][i].item()])[0]
                prob = top3_probs[0][i].item()
                top3_species.append((species, prob))
        
        return predicted_species, confidence_score, top3_species
    
    except Exception as e:
        st.error(f"Error making prediction: {str(e)}")
        return None, None, None

def main():
    st.set_page_config(
        page_title="Bird Sound Classifier",
        page_icon="🐦",
        layout="wide"
    )
    
    st.title("🐦 AI Bird Sound Classifier")
    st.markdown("### Upload a bird audio recording to identify the species!")
    st.markdown("**Trained on 110+ species with 80% accuracy**")
    
    # Sidebar
    st.sidebar.header("🌿 About This App")
    st.sidebar.info(
        "This AI model identifies bird species from audio recordings using "
        "deep learning on spectrograms. Perfect for conservation efforts!"
    )
    
    st.sidebar.header("πŸ“‹ Instructions")
    st.sidebar.markdown(
        """
        1. Upload an audio file (.mp3, .wav)
        2. Click 'Identify Bird Species'
        3. View predictions and confidence scores
        4. Check alternative species suggestions
        """
    )
    
    # Load model
    model, label_encoder, device = load_model_and_encoder()
    
    if model is None:
        st.error("❌ Failed to load model. Please check the model files.")
        st.stop()
    
    st.success("βœ… Model loaded successfully!")
    
    # File upload
    uploaded_file = st.file_uploader(
        "Choose an audio file", 
        type=['mp3', 'wav', 'flac'],
        help="Upload a bird sound recording (first 5 seconds will be analyzed)"
    )
    
    if uploaded_file is not None:
        # Display file info
        col1, col2 = st.columns(2)
        with col1:
            st.write("**πŸ“ File Details:**")
            st.write(f"β€’ Name: {uploaded_file.name}")
            st.write(f"β€’ Size: {uploaded_file.size:,} bytes")
        
        with col2:
            st.write("**🎡 Audio Player:**")
            st.audio(uploaded_file, format='audio/wav')
        
        # Prediction button
        # Prediction button
        if st.button("πŸ” Identify Bird Species", type="primary", use_container_width=True):
            with st.spinner("πŸ”„ Processing audio and making prediction..."):
                try:
                    # Process audio using librosa (more reliable)
                    spectrogram = preprocess_audio(uploaded_file)
                    
                    if spectrogram is not None:
                        predicted_species, confidence, top3_predictions = predict_bird_species(
                            model, spectrogram, label_encoder, device
                        )
                        
                        # Display results
                        if predicted_species is not None:
                            st.success("πŸŽ‰ Prediction Complete!")
                            
                            # Main prediction
                        st.subheader("πŸ† Primary Prediction")
                        clean_species = predicted_species.replace("_sound", "").replace("_", " ")
                        
                        col1, col2 = st.columns([2, 1])
                        with col1:
                            st.metric(
                                label="Predicted Species",
                                value=clean_species,
                                delta=f"{confidence:.1%} confidence"
                            )
                        
                        with col2:
                            if confidence > 0.8:
                                st.success("🎯 High Confidence")
                            elif confidence > 0.6:
                                st.warning("⚠️ Moderate Confidence")
                            else:
                                st.info("πŸ’­ Low Confidence")
                        
                        # Top 3 predictions
                        st.subheader("πŸ“Š Alternative Predictions")
                        for i, (species, prob) in enumerate(top3_predictions):
                            clean_name = species.replace("_sound", "").replace("_", " ")
                            st.write(f"**{i+1}.** {clean_name}")
                            st.progress(prob)
                            st.caption(f"Confidence: {prob:.1%}")
                        
                        # Conservation note
                        st.subheader("🌿 Conservation Impact")
                        st.info(
                            f"Identifying '{clean_species}' helps with biodiversity monitoring "
                            "and conservation efforts in national parks and protected areas."
                        )
                
                    else:
                        st.error("❌ Failed to process audio file.")
                            
                
                        
                except Exception as e:
                    st.error(f"❌ Error processing audio: {str(e)}")

    
    # Footer
    st.markdown("---")
    st.markdown(
        "**🌍 Built for Conservation** | "
        "This tool supports wildlife monitoring and biodiversity research."
    )

if __name__ == "__main__":
    main()