Spaces:
Sleeping
Sleeping
File size: 15,628 Bytes
97c2731 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 |
"""
Enhanced voice modulation with open-source tools for GRIT Voice Agent
Provides emotion-based voice modulation and alternative TTS options
"""
import os
import json
import logging
import numpy as np
import tempfile
import subprocess
from typing import Dict, List, Optional, Union, Any
from datetime import datetime
# Configure logging
logging.basicConfig(level=logging.INFO, format='%(asctime)s - %(name)s - %(levelname)s - %(message)s')
logger = logging.getLogger(__name__)
# Try to import audio processing libraries
try:
import librosa
import soundfile as sf
AUDIO_LIBS_AVAILABLE = True
except ImportError:
AUDIO_LIBS_AVAILABLE = False
logger.warning("Audio libraries not available. Install with: pip install librosa soundfile")
# Try to import Bark if available
try:
from bark import SAMPLE_RATE, generate_audio, preload_models
BARK_AVAILABLE = True
except ImportError:
BARK_AVAILABLE = False
logger.warning("Bark TTS not available. Install with: pip install git+https://github.com/suno-ai/bark.git")
# Default paths
DEFAULT_OUTPUT = "output.wav"
DEFAULT_VOICE = "voices/315_taylor.wav"
# Emotion voice parameters
EMOTION_VOICE_PARAMS = {
"joy": {
"speed": 1.15,
"pitch_shift": 0.5,
"energy_boost": 1.2
},
"sadness": {
"speed": 0.85,
"pitch_shift": -1.0,
"energy_boost": 0.8
},
"anger": {
"speed": 1.1,
"pitch_shift": -0.5,
"energy_boost": 1.5
},
"fear": {
"speed": 1.05,
"pitch_shift": 0.3,
"energy_boost": 0.9
},
"surprise": {
"speed": 1.2,
"pitch_shift": 1.0,
"energy_boost": 1.3
},
"neutral": {
"speed": 1.0,
"pitch_shift": 0.0,
"energy_boost": 1.0
}
}
class VoiceModulator:
"""Apply emotion-based modulation to voice audio"""
def __init__(self):
self.available = AUDIO_LIBS_AVAILABLE
def apply_modulation(self,
audio_path: str,
output_path: str,
emotion: str = "neutral") -> str:
"""
Apply emotion-based modulation to audio file
Args:
audio_path: Path to input audio file
output_path: Path to save modulated audio
emotion: Emotion to apply (joy, sadness, anger, fear, surprise, neutral)
Returns:
Path to modulated audio file
"""
if not self.available:
logger.error("Audio libraries not available")
return audio_path
if not os.path.exists(audio_path):
logger.error(f"Audio file not found: {audio_path}")
return audio_path
try:
# Get emotion parameters
params = EMOTION_VOICE_PARAMS.get(emotion, EMOTION_VOICE_PARAMS["neutral"])
# Load audio
y, sr = librosa.load(audio_path, sr=None)
# Apply speed change (time stretch)
if params["speed"] != 1.0:
y_stretched = librosa.effects.time_stretch(y, rate=params["speed"])
else:
y_stretched = y
# Apply pitch shift
if params["pitch_shift"] != 0.0:
y_shifted = librosa.effects.pitch_shift(y_stretched, sr=sr, n_steps=params["pitch_shift"])
else:
y_shifted = y_stretched
# Apply energy boost
if params["energy_boost"] != 1.0:
y_boosted = y_shifted * params["energy_boost"]
# Normalize if needed
if np.max(np.abs(y_boosted)) > 1.0:
y_boosted = y_boosted / np.max(np.abs(y_boosted))
else:
y_boosted = y_shifted
# Save modulated audio
sf.write(output_path, y_boosted, sr)
logger.info(f"Applied {emotion} modulation to {audio_path}")
return output_path
except Exception as e:
logger.error(f"Error applying voice modulation: {e}")
return audio_path
class BarkTTS:
"""Bark text-to-speech implementation"""
def __init__(self):
self.available = BARK_AVAILABLE
if self.available:
try:
# Preload models
preload_models()
logger.info("Bark TTS models loaded")
except Exception as e:
logger.error(f"Failed to load Bark TTS models: {e}")
self.available = False
def generate_speech(self,
text: str,
output_path: str = DEFAULT_OUTPUT,
speaker_id: str = None,
emotion: str = "neutral") -> str:
"""
Generate speech using Bark TTS
Args:
text: Text to convert to speech
output_path: Path to save audio file
speaker_id: Speaker ID or preset
emotion: Emotion to apply
Returns:
Path to generated audio file
"""
if not self.available:
logger.error("Bark TTS not available")
return None
try:
# Apply emotion to prompt
emotion_prompts = {
"joy": "with an excited and happy tone",
"sadness": "with a sad and melancholic tone",
"anger": "with an angry and intense tone",
"fear": "with a fearful and nervous tone",
"surprise": "with a surprised and amazed tone",
"neutral": "with a neutral and calm tone"
}
emotion_prompt = emotion_prompts.get(emotion, "")
# Create speaker prompt
if speaker_id:
prompt = f"[{speaker_id}] {text} {emotion_prompt}"
else:
prompt = f"{text} {emotion_prompt}"
# Generate audio
audio_array = generate_audio(prompt)
# Save to file
sf.write(output_path, audio_array, SAMPLE_RATE)
logger.info(f"Generated speech with Bark TTS: {output_path}")
return output_path
except Exception as e:
logger.error(f"Error generating speech with Bark TTS: {e}")
return None
class PiperTTS:
"""Piper TTS implementation (command-line based)"""
def __init__(self, model_dir: str = "piper_models"):
self.model_dir = model_dir
self.available = self._check_piper()
def _check_piper(self) -> bool:
"""Check if Piper is installed"""
try:
result = subprocess.run(["piper", "--help"],
stdout=subprocess.PIPE,
stderr=subprocess.PIPE)
if result.returncode == 0:
logger.info("Piper TTS is available")
return True
else:
logger.warning("Piper TTS command not found")
return False
except Exception as e:
logger.error(f"Error checking Piper TTS: {e}")
return False
def _get_model_path(self, voice: str = "en_US-lessac-medium") -> str:
"""Get path to Piper model"""
model_path = os.path.join(self.model_dir, f"{voice}.onnx")
if os.path.exists(model_path):
return model_path
else:
logger.warning(f"Piper model not found: {model_path}")
return None
def generate_speech(self,
text: str,
output_path: str = DEFAULT_OUTPUT,
voice: str = "en_US-lessac-medium",
emotion: str = "neutral") -> str:
"""
Generate speech using Piper TTS
Args:
text: Text to convert to speech
output_path: Path to save audio file
voice: Voice model to use
emotion: Emotion to apply (used for post-processing)
Returns:
Path to generated audio file
"""
if not self.available:
logger.error("Piper TTS not available")
return None
try:
# Get model path
model_path = self._get_model_path(voice)
if not model_path:
return None
# Create temporary text file
with tempfile.NamedTemporaryFile(mode="w", suffix=".txt", delete=False) as temp:
temp.write(text)
temp_path = temp.name
# Generate speech
command = [
"piper",
"--model", model_path,
"--output_file", output_path,
"--file", temp_path
]
result = subprocess.run(command,
stdout=subprocess.PIPE,
stderr=subprocess.PIPE)
# Clean up temp file
os.unlink(temp_path)
if result.returncode == 0:
logger.info(f"Generated speech with Piper TTS: {output_path}")
# Apply emotion modulation if needed
if emotion != "neutral":
modulator = VoiceModulator()
modulated_path = f"modulated_{os.path.basename(output_path)}"
modulator.apply_modulation(output_path, modulated_path, emotion)
os.replace(modulated_path, output_path)
return output_path
else:
logger.error(f"Piper TTS error: {result.stderr.decode()}")
return None
except Exception as e:
logger.error(f"Error generating speech with Piper TTS: {e}")
return None
class EnhancedVoice:
"""Enhanced voice generation with emotion support"""
def __init__(self):
self.modulator = VoiceModulator()
self.bark_tts = BarkTTS() if BARK_AVAILABLE else None
self.piper_tts = PiperTTS()
# Check if XTTS is available
try:
from TTS.api import TTS
self.xtts_available = True
except ImportError:
self.xtts_available = False
logger.warning("XTTS not available")
def generate_speech(self,
text: str,
output_path: str = DEFAULT_OUTPUT,
voice_file: str = DEFAULT_VOICE,
engine: str = "xtts",
emotion: str = "neutral",
language: str = "en") -> str:
"""
Generate speech with emotion
Args:
text: Text to convert to speech
output_path: Path to save audio file
voice_file: Path to reference voice file (for XTTS)
engine: TTS engine to use (xtts, bark, piper)
emotion: Emotion to apply
language: Language code
Returns:
Path to generated audio file
"""
try:
result_path = None
# Generate speech with selected engine
if engine == "bark" and self.bark_tts and self.bark_tts.available:
result_path = self.bark_tts.generate_speech(
text=text,
output_path=output_path,
emotion=emotion
)
elif engine == "piper" and self.piper_tts and self.piper_tts.available:
result_path = self.piper_tts.generate_speech(
text=text,
output_path=output_path,
emotion=emotion
)
elif engine == "xtts" and self.xtts_available:
# Use original XTTS
from TTS.api import TTS
# Get voice parameters for emotion
params = EMOTION_VOICE_PARAMS.get(emotion, EMOTION_VOICE_PARAMS["neutral"])
# Load TTS model
tts = TTS("tts_models/multilingual/multi-dataset/xtts_v2")
# Generate speech
tts.tts_to_file(
text=text,
file_path=output_path,
speaker_wav=voice_file,
language=language,
speed=params["speed"]
)
result_path = output_path
# Apply additional modulation if needed
if emotion != "neutral" and self.modulator.available:
modulated_path = f"modulated_{os.path.basename(output_path)}"
self.modulator.apply_modulation(output_path, modulated_path, emotion)
os.replace(modulated_path, output_path)
else:
logger.error(f"No available TTS engine for {engine}")
return None
return result_path
except Exception as e:
logger.error(f"Error generating enhanced speech: {e}")
return None
# Singleton instance
enhanced_voice = EnhancedVoice()
def generate_speech(text: str,
output_path: str = DEFAULT_OUTPUT,
voice_file: str = DEFAULT_VOICE,
engine: str = "xtts",
emotion: str = "neutral",
language: str = "en") -> str:
"""Generate speech with emotion using available TTS engines"""
return enhanced_voice.generate_speech(
text=text,
output_path=output_path,
voice_file=voice_file,
engine=engine,
emotion=emotion,
language=language
)
def apply_voice_modulation(audio_path: str,
output_path: str,
emotion: str = "neutral") -> str:
"""Apply emotion-based modulation to existing audio file"""
modulator = VoiceModulator()
return modulator.apply_modulation(audio_path, output_path, emotion)
# Example usage
if __name__ == "__main__":
# Test with different emotions
test_texts = {
"joy": "I'm so excited to share this amazing news with you! We've achieved our goals!",
"sadness": "Unfortunately, I have to inform you that we didn't meet our targets this quarter.",
"anger": "This is completely unacceptable! We need to address this issue immediately!",
"surprise": "Wow! I can't believe what just happened! This is incredible!",
"neutral": "Let me provide you with an update on our current progress."
}
for emotion, text in test_texts.items():
print(f"Testing {emotion}...")
# Try different engines
for engine in ["xtts", "bark", "piper"]:
output_path = f"{engine}_{emotion}.wav"
result = generate_speech(
text=text,
output_path=output_path,
engine=engine,
emotion=emotion
)
if result:
print(f"Generated speech with {engine}: {output_path}")
else:
print(f"Failed to generate speech with {engine}")
|