Spaces:
Sleeping
Sleeping
File size: 5,133 Bytes
3454d4e fae4d2b 3454d4e b7d66a6 3454d4e b7d66a6 3454d4e 3392db1 fae4d2b dac12cb 3454d4e b7d66a6 3454d4e c159493 3454d4e 6c15309 dc15846 3454d4e 3392db1 3454d4e 534ce84 ef6bd85 69a7629 3454d4e 1ab0b83 69a7629 3454d4e 69a7629 3454d4e ae23c23 3454d4e 25a1096 ae23c23 3454d4e 25a1096 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 |
import streamlit as st
from transformers import pipeline
st.set_page_config(page_title="Common NLP Tasks")
st.title("Common NLP Tasks")
st.subheader("Use the menu on the left to select a NLP task to do (click on > if closed).")
expander = st.sidebar.expander("About")
expander.write("This web app allows you to perform common Natural Language Processing tasks, select a task below to get started.")
st.sidebar.header("What will you like to do?")
option = st.sidebar.radio("", ["Extractive question answering", "Text summarization", "Text generation", "Sentiment analysis"])
@st.cache(show_spinner=False, allow_output_mutation=True)
def question_model():
model_name = "deepset/roberta-base-squad2"
question_answerer = pipeline(model=model_name, tokenizer=model_name, revision="v1.0", task="question-answering")
return question_answerer
@st.cache(show_spinner=False, allow_output_mutation=True)
def summarization_model():
summarizer = pipeline("summarization")
return summarizer
@st.cache(show_spinner=False, allow_output_mutation=True)
def generation_model():
generator = pipeline("text-generation")
return generator
@st.cache(show_spinner=False, allow_output_mutation=True)
def sentiment_model():
sentiment_analysis = pipeline("sentiment-analysis")
return sentiment_analysis
if option == "Extractive question answering":
st.markdown("<h2 style='text-align: center; color:red;'>Extract answer from text</h2>", unsafe_allow_html=True)
source = st.radio("How would you like to start? Choose an option below", ["I want to input some text", "I want to upload a file"])
if source == "I want to input some text":
with open("sample.txt", "r") as text_file:
sample_text = text_file.read()
context = st.text_area('Use the example below or input your own text in English (10,000 characters max)', value=sample_text, max_chars=10000, height=330)
question = st.text_input(label='Enter your question')
button = st.button('Get answer')
if button:
question_answerer = question_model()
with st.spinner(text="Getting answer..."):
answer = question_answerer(context=context, question=question)
answer = answer["answer"]
st.write(f"Answer ---> {answer}")
elif source == "I want to upload a file":
uploaded_file = st.file_uploader("Choose a .txt file to upload", type=["txt"])
if uploaded_file is not None:
context = st.text_area("", value=uploaded_file.read(), height=330)
question = st.text_input(label="Enter your question")
button = st.button("Get answer")
if button:
question_answerer = question_model()
with st.spinner(text="Getting answer..."):
answer = question_answerer(context=context, question=question)
st.write(f"Answer ---> {answer}")
elif option == 'Text summarization':
st.markdown("<h2 style='text-align: center; color:red;'>Summarize text</h2>", unsafe_allow_html=True)
sample_text = "sample text"
source = st.radio("How would you like to start? Choose an option below", ["I want to input some text", "I want to upload a file"])
if source == "I want to input some text":
text = st.text_area('Input a text in English (between 1,000 and 10,000 characters)', value=sample_text, max_chars=10000, height=330)
button = st.button('Get summary')
if button:
summarizer = summarization_model()
with st.spinner(text="Summarizing text..."):
summary = summarizer(text, max_length=130, min_length=30)
st.write(summary)
elif source == "I want to upload a file":
uploaded_file = st.file_uploader("Choose a .txt file to upload", type=["txt"])
button = st.button('Get summary')
if button:
summarizer = summarization_model()
with st.spinner(text="Summarizing text..."):
summary = summarizer(text, max_length=130, min_length=30)
st.write(summary)
elif option == 'Text generation':
st.markdown("<h2 style='text-align: center; color:grey;'>Generate text</h2>", unsafe_allow_html=True)
text = st.text_input(label='Enter one line of text and let the NLP model generate the rest for you')
button = st.button('Generate text')
if button:
generator = generation_model()
with st.spinner(text="Generating text..."):
generated_text = generator(text, max_length=50)
st.write(generated_text[0]["generated_text"])
elif option == 'Sentiment analysis':
st.markdown("<h2 style='text-align: center; color:grey;'>Classify review</h2>", unsafe_allow_html=True)
text = st.text_input(label='Enter a sentence to get its sentiment analysis')
button = st.button('Get sentiment analysis')
if button:
sentiment_analysis = sentiment_model()
with st.spinner(text="Getting sentiment analysis..."):
sentiment = sentiment_analysis(text)
st.write(sentiment[0]["label"]) |