File size: 6,333 Bytes
d9da15c |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 |
import streamlit as st
from streamlit_option_menu import option_menu
import openai
from streamlit_chat import message
#importation des librairies
import pandas as pd
st.set_page_config(layout='wide')
st.markdown("""
<style>
.block-container {
padding-top: 2rem;
padding-bottom: 0rem;
padding-left: 1rem;
padding-right: 1rem;
}
</style>
""", unsafe_allow_html=True)
openai.api_key = "sk-proj-RExBXqnjaTYCWwB3aQOOT3BlbkFJJf9S2nbyQj11VfArtjjo"
def api_calling(prompt):
completions = openai.Completion.create(
engine="gpt-3.5-turbo-instruct",
prompt=prompt,
max_tokens=1024,
n=1,
stop=None,
temperature=0.5,
)
message = completions.choices[0].text
return message
header , menu = st.columns(2)
with header:
st.image('static/img/teacherbot.png')
with menu:
# option_menu(menu_title=None,
# options=['Visualisation','Prédiction'],
# icons=["house","book",'envelope'],
# default_index=0,
# orientation="horizontal"
# )
selecte=option_menu(None, ["Accueil", "Se déconnecter"],
icons=['house', 'cloud-upload'],
menu_icon="cast", default_index=0, orientation="horizontal",
styles={
"container": {"padding": "0!important", "background-color": "#fafafa","font-family": "Impact, Haettenschweiler, 'Arial Narrow Bold', sans-serif"},
"icon": {"color": "orange", "font-size": "25px" },
"nav-link": {"font-size": "20px", "text-align": "left", "margin":"0px", "--hover-color": "#eee"},
"nav-link-selected": {"background-color": "#70ad46","color":"white"},
"menu-title":{"color":"#424143"}
}
)
if selecte == "Accueil":
st.title(f"Bienvenu au cours d'informatique de la classe de 3ieme")
sect1_col1=st.container()
sect1_col2 = st.container()
with open('static/css/style.css') as f:
st.markdown(f'<style>{f.read()}</style>', unsafe_allow_html=True)
with sect1_col1.container(height=700):
st.selectbox("Quelle UE voulez-vous preparer?",("Informatique","Mathematique","Physique"))
st.selectbox("De quel UA s'agit-il?",("Decrire les peripheriques","Decrire les logiciels","Assurer le bon fonctionnement de l'ordinateur","utiliser les fonctions d'un tableur"))
if 'user_input' not in st.session_state:
st.session_state['user_input'] = []
if 'openai_response' not in st.session_state:
st.session_state['openai_response'] = []
def get_text():
input_text = st.text_input("Quelles sont les objectifs du programme concerné?", key="input")
return input_text
user_input = get_text()
if user_input:
output = api_calling(user_input)
output = output.lstrip("\n")
# Store the output
st.session_state.openai_response.append(user_input)
st.session_state.user_input.append(output)
message_history = st.empty()
if st.session_state['user_input']:
for i in range(len(st.session_state['user_input']) - 1, -1, -1):
# This function displays user input
message(st.session_state["user_input"][i],
key=str(i),avatar_style="icons")
# This function displays OpenAI response
message(st.session_state['openai_response'][i],
avatar_style="miniavs",is_user=True,
key=str(i) + 'data_by_user')
st.markdown("""
<style>
# div[data-testid="stMetric"] {
# background-color: rgba(187, 216, 158, 0.59);
# border: 1px solid rgba(28, 131, 225, 0.1);
padding:-10px;
# border-radius: 5px;
# color: rgb(30, 103, 119);
# overflow-wrap: break-word;
# font-weight:bold;
# }
[data-testid="stMetricValue"]{
font-size: 45px;
color: #2FB56B;
font-weight:bold;
text-align:center;
margin-top:-33px;
}
/* breakline for metric text */
[data-testid="stMetricLabel"] {
word-wrap: break-word;
color: #ef8451;
font-size:40px;
font-weight:bold;
}
[data-testid ="stVerticalBlock"]{
#background-color: rgba(187, 216, 158, 0.59);
#border: 1px solid rgba(28, 131, 225, 0.1);
text-align:center;
}
[data-v-5af006b8]{
background-color:black;
}
.st-emotion-cache-sr3x2q{
width:80%;
margin-left:10%;
margin-right:10%;
height: 50% !important;
}
.st-emotion-cache-7ym5gk{
background-color: #70ad46;
color:white;
}
</style>
"""
, unsafe_allow_html=True)
footer = st.container()
with footer:
st.markdown("---")
st.markdown(
"""
<style>
p {
font-size: 16px;
text-align: center;
}
a {
text-decoration: none;
color: #00a;
font-weight: 600;
}
</style>
<p>
© Designed by <a href="#"></a>.
</p>
""", unsafe_allow_html=True
)
if selecte == "Données":
st.title(f"Les Capteurs en NAIROBI,KENYA")
st_folium(map,width=2000,height=600)
st.title(f"DATA")
moi = st.columns(1)
placeholder = st.empty()
df_all_concatenated_transform_daily= df_all_concatenated_transform_daily[df_all_concatenated_transform_daily["Moi"] ==moi_filtre]
|