Spaces:
Runtime error
Runtime error
File size: 21,917 Bytes
10b0761 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 |
# Copyright (c) Facebook, Inc. and its affiliates.
#
# This source code is licensed under the MIT license found in the
# LICENSE file in the root directory of this source tree.
import argparse
import json
import os
import random
import sys
from io import StringIO
import torch
import torch.nn.functional as F
from fairseq import options, utils
from fairseq.data import Dictionary
from fairseq.data.language_pair_dataset import collate
from fairseq.models import (
FairseqEncoder,
FairseqEncoderDecoderModel,
FairseqIncrementalDecoder,
)
from fairseq.models.fairseq_encoder import EncoderOut
from fairseq.tasks import LegacyFairseqTask
from fairseq_cli import generate, interactive, preprocess, train, validate
import fairseq.distributed.utils as distributed_utils
from fairseq.dataclass.utils import convert_namespace_to_omegaconf
def dummy_dictionary(vocab_size, prefix="token_"):
d = Dictionary()
for i in range(vocab_size):
token = prefix + str(i)
d.add_symbol(token)
d.finalize(padding_factor=1) # don't add extra padding symbols
return d
def dummy_dataloader(
samples, padding_idx=1, eos_idx=2, batch_size=None,
):
if batch_size is None:
batch_size = len(samples)
# add any missing data to samples
for i, sample in enumerate(samples):
if "id" not in sample:
sample["id"] = i
# create dataloader
dataset = TestDataset(samples)
dataloader = torch.utils.data.DataLoader(
dataset,
batch_size=batch_size,
collate_fn=(lambda samples: collate(samples, padding_idx, eos_idx)),
)
return iter(dataloader)
def sequence_generator_setup():
# construct dummy dictionary
d = dummy_dictionary(vocab_size=2)
eos = d.eos()
w1 = 4
w2 = 5
# construct source data
src_tokens = torch.LongTensor([[w1, w2, eos], [w1, w2, eos]])
src_lengths = torch.LongTensor([2, 2])
args = argparse.Namespace()
unk = 0.0
args.beam_probs = [
# step 0:
torch.FloatTensor(
[
# eos w1 w2
# sentence 1:
[0.0, unk, 0.9, 0.1], # beam 1
[0.0, unk, 0.9, 0.1], # beam 2
# sentence 2:
[0.0, unk, 0.7, 0.3],
[0.0, unk, 0.7, 0.3],
]
),
# step 1:
torch.FloatTensor(
[
# eos w1 w2 prefix
# sentence 1:
[1.0, unk, 0.0, 0.0], # w1: 0.9 (emit: w1 <eos>: 0.9*1.0)
[0.0, unk, 0.9, 0.1], # w2: 0.1
# sentence 2:
[0.25, unk, 0.35, 0.4], # w1: 0.7 (don't emit: w1 <eos>: 0.7*0.25)
[0.00, unk, 0.10, 0.9], # w2: 0.3
]
),
# step 2:
torch.FloatTensor(
[
# eos w1 w2 prefix
# sentence 1:
[0.0, unk, 0.1, 0.9], # w2 w1: 0.1*0.9
[
0.6,
unk,
0.2,
0.2,
], # w2 w2: 0.1*0.1 (emit: w2 w2 <eos>: 0.1*0.1*0.6)
# sentence 2:
[
0.60,
unk,
0.4,
0.00,
], # w1 w2: 0.7*0.4 (emit: w1 w2 <eos>: 0.7*0.4*0.6)
[0.01, unk, 0.0, 0.99], # w2 w2: 0.3*0.9
]
),
# step 3:
torch.FloatTensor(
[
# eos w1 w2 prefix
# sentence 1:
[
1.0,
unk,
0.0,
0.0,
], # w2 w1 w2: 0.1*0.9*0.9 (emit: w2 w1 w2 <eos>: 0.1*0.9*0.9*1.0)
[
1.0,
unk,
0.0,
0.0,
], # w2 w1 w1: 0.1*0.9*0.1 (emit: w2 w1 w1 <eos>: 0.1*0.9*0.1*1.0)
# sentence 2:
[
0.1,
unk,
0.5,
0.4,
], # w2 w2 w2: 0.3*0.9*0.99 (emit: w2 w2 w2 <eos>: 0.3*0.9*0.99*0.1)
[
1.0,
unk,
0.0,
0.0,
], # w1 w2 w1: 0.7*0.4*0.4 (emit: w1 w2 w1 <eos>: 0.7*0.4*0.4*1.0)
]
),
]
task = TestTranslationTask.setup_task(args, d, d)
model = task.build_model(args)
tgt_dict = task.target_dictionary
return tgt_dict, w1, w2, src_tokens, src_lengths, model
def create_dummy_data(data_dir, num_examples=100, maxlen=20, alignment=False):
def _create_dummy_data(filename):
data = torch.rand(num_examples * maxlen)
data = 97 + torch.floor(26 * data).int()
with open(os.path.join(data_dir, filename), "w") as h:
offset = 0
for _ in range(num_examples):
ex_len = random.randint(1, maxlen)
ex_str = " ".join(map(chr, data[offset : offset + ex_len]))
print(ex_str, file=h)
offset += ex_len
def _create_dummy_alignment_data(filename_src, filename_tgt, filename):
with open(os.path.join(data_dir, filename_src), "r") as src_f, open(
os.path.join(data_dir, filename_tgt), "r"
) as tgt_f, open(os.path.join(data_dir, filename), "w") as h:
for src, tgt in zip(src_f, tgt_f):
src_len = len(src.split())
tgt_len = len(tgt.split())
avg_len = (src_len + tgt_len) // 2
num_alignments = random.randint(avg_len // 2, 2 * avg_len)
src_indices = torch.floor(torch.rand(num_alignments) * src_len).int()
tgt_indices = torch.floor(torch.rand(num_alignments) * tgt_len).int()
ex_str = " ".join(
[
"{}-{}".format(src, tgt)
for src, tgt in zip(src_indices, tgt_indices)
]
)
print(ex_str, file=h)
_create_dummy_data("train.in")
_create_dummy_data("train.out")
_create_dummy_data("valid.in")
_create_dummy_data("valid.out")
_create_dummy_data("test.in")
_create_dummy_data("test.out")
if alignment:
_create_dummy_alignment_data("train.in", "train.out", "train.align")
_create_dummy_alignment_data("valid.in", "valid.out", "valid.align")
_create_dummy_alignment_data("test.in", "test.out", "test.align")
def preprocess_lm_data(data_dir):
preprocess_parser = options.get_preprocessing_parser()
preprocess_args = preprocess_parser.parse_args(
[
"--only-source",
"--trainpref",
os.path.join(data_dir, "train.out"),
"--validpref",
os.path.join(data_dir, "valid.out"),
"--testpref",
os.path.join(data_dir, "test.out"),
"--destdir",
data_dir,
]
)
preprocess.main(preprocess_args)
def preprocess_translation_data(data_dir, extra_flags=None):
preprocess_parser = options.get_preprocessing_parser()
preprocess_args = preprocess_parser.parse_args(
[
"--source-lang",
"in",
"--target-lang",
"out",
"--trainpref",
os.path.join(data_dir, "train"),
"--validpref",
os.path.join(data_dir, "valid"),
"--testpref",
os.path.join(data_dir, "test"),
"--thresholdtgt",
"0",
"--thresholdsrc",
"0",
"--destdir",
data_dir,
]
+ (extra_flags or []),
)
preprocess.main(preprocess_args)
def preprocess_summarization_data(data_dir, extra_flags=None):
preprocess_parser = options.get_preprocessing_parser()
preprocess_args = preprocess_parser.parse_args(
[
"--source-lang",
"in",
"--target-lang",
"out",
"--trainpref",
os.path.join(data_dir, "train"),
"--validpref",
os.path.join(data_dir, "valid"),
"--testpref",
os.path.join(data_dir, "test"),
"--thresholdtgt",
"0",
"--thresholdsrc",
"0",
"--joined-dictionary",
"--destdir",
data_dir,
]
+ (extra_flags or []),
)
preprocess.main(preprocess_args)
def create_laser_data_and_config_json(data_dir):
src_langs = ["de", "fr", "ru", "tr", "zh"]
tgt_langs = ["en", "es"]
config_json = {}
config_train_json = []
src_vocab = None
tgt_vocab = None
for src_lang in src_langs:
for tgt_lang in tgt_langs:
langpair_folder = f"{src_lang}-{tgt_lang}"
langpair_path = os.path.join(data_dir, langpair_folder)
os.mkdir(langpair_path)
create_dummy_data(langpair_path)
preprocess_translation_data(langpair_path, ["--dataset-impl", "cached"])
src_vocab = os.path.join(langpair_path, "dict.in.txt")
tgt_vocab = os.path.join(langpair_path, "dict.out.txt")
config_train_json.append(
{
"id": 0 if tgt_lang == "en" else 1,
"src": os.path.join(langpair_path, "train.in-out.in"),
"tgt": os.path.join(langpair_path, "train.in-out.out"),
}
)
config_json["src_vocab"] = src_vocab
config_json["tgt_vocab"] = tgt_vocab
config_json["train"] = config_train_json
with open(os.path.join(data_dir, "laserconfig.json"), "w") as config_file:
json.dump(config_json, config_file)
return config_file
def train_translation_model(
data_dir,
arch,
extra_flags=None,
task="translation",
run_validation=False,
lang_flags=None,
extra_valid_flags=None,
world_size=1,
):
if lang_flags is None:
lang_flags = [
"--source-lang",
"in",
"--target-lang",
"out",
]
train_parser = options.get_training_parser()
train_args = options.parse_args_and_arch(
train_parser,
[
"--task",
task,
data_dir,
"--save-dir",
data_dir,
"--arch",
arch,
"--optimizer",
"nag",
"--lr",
"0.05",
"--max-tokens",
"500",
"--max-epoch",
"1",
"--no-progress-bar",
"--distributed-world-size",
str(world_size),
"--num-workers",
"0",
]
+ lang_flags
+ (extra_flags or []),
)
cfg = convert_namespace_to_omegaconf(train_args)
distributed_utils.call_main(cfg, train.main)
if run_validation:
# test validation
validate_parser = options.get_validation_parser()
validate_args = options.parse_args_and_arch(
validate_parser,
[
"--task",
task,
data_dir,
"--path",
os.path.join(data_dir, "checkpoint_last.pt"),
"--valid-subset",
"valid",
"--max-tokens",
"500",
"--no-progress-bar",
"--num-workers",
"0",
]
+ lang_flags
+ (extra_valid_flags or []),
)
validate.main(validate_args)
def generate_main(data_dir, extra_flags=None, path=None):
if extra_flags is None:
extra_flags = [
"--print-alignment",
]
if path is None:
path = os.path.join(data_dir, "checkpoint_last.pt")
generate_parser = options.get_generation_parser()
generate_args = options.parse_args_and_arch(
generate_parser,
[
data_dir,
"--path",
path,
"--beam",
"3",
"--batch-size",
"64",
"--max-len-b",
"5",
"--gen-subset",
"valid",
"--no-progress-bar",
"--num-workers",
"0",
]
+ (extra_flags or []),
)
# evaluate model in batch mode
generate.main(generate_args)
# evaluate model interactively
generate_args.buffer_size = 0
generate_args.input = "-"
generate_args.batch_size = None
orig_stdin = sys.stdin
sys.stdin = StringIO("h e l l o\n")
interactive.main(generate_args)
sys.stdin = orig_stdin
class TestDataset(torch.utils.data.Dataset):
def __init__(self, data):
super().__init__()
self.data = data
self.sizes = None
def __getitem__(self, index):
return self.data[index]
def __len__(self):
return len(self.data)
class TestTranslationTask(LegacyFairseqTask):
def __init__(self, args, src_dict, tgt_dict, model):
super().__init__(args)
self.src_dict = src_dict
self.tgt_dict = tgt_dict
self.model = model
@classmethod
def setup_task(cls, args, src_dict=None, tgt_dict=None, model=None):
return cls(args, src_dict, tgt_dict, model)
def build_model(self, args):
return TestModel.build_model(args, self)
@property
def source_dictionary(self):
return self.src_dict
@property
def target_dictionary(self):
return self.tgt_dict
class TestModel(FairseqEncoderDecoderModel):
def __init__(self, encoder, decoder):
super().__init__(encoder, decoder)
@classmethod
def build_model(cls, args, task):
encoder = TestEncoder(args, task.source_dictionary)
decoder = TestIncrementalDecoder(args, task.target_dictionary)
return cls(encoder, decoder)
class TestEncoder(FairseqEncoder):
def __init__(self, args, dictionary):
super().__init__(dictionary)
self.args = args
def forward(self, src_tokens, src_lengths=None, **kwargs):
return EncoderOut(
encoder_out=src_tokens,
encoder_padding_mask=None,
encoder_embedding=None,
encoder_states=None,
src_tokens=None,
src_lengths=None,
)
def reorder_encoder_out(self, encoder_out, new_order):
return EncoderOut(
encoder_out=encoder_out.encoder_out.index_select(0, new_order),
encoder_padding_mask=None,
encoder_embedding=None,
encoder_states=None,
src_tokens=None,
src_lengths=None,
)
class TestIncrementalDecoder(FairseqIncrementalDecoder):
def __init__(self, args, dictionary):
super().__init__(dictionary)
assert hasattr(args, "beam_probs") or hasattr(args, "probs")
args.max_decoder_positions = getattr(args, "max_decoder_positions", 100)
self.args = args
def forward(self, prev_output_tokens, encoder_out=None, incremental_state=None):
if incremental_state is not None:
prev_output_tokens = prev_output_tokens[:, -1:]
bbsz = prev_output_tokens.size(0)
vocab = len(self.dictionary)
src_len = encoder_out.encoder_out.size(1)
tgt_len = prev_output_tokens.size(1)
# determine number of steps
if incremental_state is not None:
# cache step number
step = utils.get_incremental_state(self, incremental_state, "step")
if step is None:
step = 0
utils.set_incremental_state(self, incremental_state, "step", step + 1)
steps = [step]
else:
steps = list(range(tgt_len))
# define output in terms of raw probs
if hasattr(self.args, "probs"):
assert (
self.args.probs.dim() == 3
), "expected probs to have size bsz*steps*vocab"
probs = self.args.probs.index_select(1, torch.LongTensor(steps))
else:
probs = torch.FloatTensor(bbsz, len(steps), vocab).zero_()
for i, step in enumerate(steps):
# args.beam_probs gives the probability for every vocab element,
# starting with eos, then unknown, and then the rest of the vocab
if step < len(self.args.beam_probs):
probs[:, i, self.dictionary.eos() :] = self.args.beam_probs[step]
else:
probs[:, i, self.dictionary.eos()] = 1.0
# random attention
attn = torch.rand(bbsz, tgt_len, src_len)
dev = prev_output_tokens.device
return probs.to(dev), {"attn": [attn.to(dev)]}
def get_normalized_probs(self, net_output, log_probs, _):
# the decoder returns probabilities directly
probs = net_output[0]
if log_probs:
return probs.log()
else:
return probs
def max_positions(self):
return self.args.max_decoder_positions
class TestReshapingEncoder(FairseqEncoder):
def __init__(self, args, dictionary):
super().__init__(dictionary)
self.args = args
def forward(self, src_tokens, src_lengths=None, **kwargs):
b_sz, t_sz = src_tokens.shape
padding_needed = t_sz % 2
x = src_tokens
if padding_needed > 0:
padding_needed = 2 - padding_needed
x = F.pad(x, (0, padding_needed))
return EncoderOut(
encoder_out=x.view(b_sz, -1, 2),
encoder_padding_mask=None,
encoder_embedding=None,
encoder_states=None,
src_tokens=None,
src_lengths=None,
)
def reorder_encoder_out(self, encoder_out, new_order):
return EncoderOut(
encoder_out=encoder_out.encoder_out.index_select(0, new_order),
encoder_padding_mask=None,
encoder_embedding=None,
encoder_states=None,
src_tokens=None,
src_lengths=None,
)
class TestReshapingModel(FairseqEncoderDecoderModel):
def __init__(self, encoder, decoder):
super().__init__(encoder, decoder)
@classmethod
def build_model(cls, args, task):
encoder = TestReshapingEncoder(args, task.source_dictionary)
decoder = TestIncrementalDecoder(args, task.target_dictionary)
return cls(encoder, decoder)
class TestAdditionalInputEncoder(FairseqEncoder):
def __init__(self, args, dictionary):
super().__init__(dictionary)
self.args = args
def forward(self, src_tokens, src_lengths=None, **kwargs):
assert "fancy_other_input" in kwargs
assert kwargs["fancy_other_input"] is not None
return EncoderOut(
encoder_out=src_tokens,
encoder_padding_mask=None,
encoder_embedding=None,
encoder_states=None,
src_tokens=None,
src_lengths=None,
)
def reorder_encoder_out(self, encoder_out, new_order):
return EncoderOut(
encoder_out=encoder_out.encoder_out.index_select(0, new_order),
encoder_padding_mask=None,
encoder_embedding=None,
encoder_states=None,
src_tokens=None,
src_lengths=None,
)
class TestAdditionalInputModel(FairseqEncoderDecoderModel):
def __init__(self, encoder, decoder):
super().__init__(encoder, decoder)
@classmethod
def build_model(cls, args, task):
encoder = TestAdditionalInputEncoder(args, task.source_dictionary)
decoder = TestIncrementalDecoder(args, task.target_dictionary)
return cls(encoder, decoder)
def forward(self, src_tokens, src_lengths, prev_output_tokens, **kwargs):
encoder_out = self.encoder(src_tokens, src_lengths=src_lengths, **kwargs)
decoder_out = self.decoder(
prev_output_tokens, encoder_out=encoder_out, **kwargs
)
return decoder_out
def train_language_model(
data_dir,
arch,
extra_flags=None,
run_validation=False,
extra_valid_flags=None,
task="language_modeling",
world_size=1,
):
train_parser = options.get_training_parser()
train_args = options.parse_args_and_arch(
train_parser,
[
"--task",
task,
data_dir,
"--arch",
arch,
"--optimizer",
"adam",
"--lr",
"0.0001",
"--max-tokens",
"500",
"--tokens-per-sample",
"500",
"--save-dir",
data_dir,
"--max-epoch",
"1",
"--no-progress-bar",
"--distributed-world-size",
str(world_size),
"--ddp-backend",
"no_c10d",
"--num-workers",
"0",
]
+ (extra_flags or []),
)
cfg = convert_namespace_to_omegaconf(train_args)
distributed_utils.call_main(cfg, train.main)
if run_validation:
# test validation
validate_parser = options.get_validation_parser()
validate_args = options.parse_args_and_arch(
validate_parser,
[
"--task",
task,
data_dir,
"--path",
os.path.join(data_dir, "checkpoint_last.pt"),
"--valid-subset",
"valid",
"--max-tokens",
"500",
"--no-progress-bar",
"--num-workers",
"0",
]
+ (extra_valid_flags or []),
)
validate.main(validate_args)
|