File size: 41,200 Bytes
10b0761
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
# Copyright (c) Facebook, Inc. and its affiliates.
#
# This source code is licensed under the MIT license found in the
# LICENSE file in the root directory of this source tree.

from typing import Dict, List, Optional

import math
import numpy as np

import torch
import torch.nn.functional as F
from torch import Tensor

from .noisy_channel_beam_search import NoisyChannelBeamSearch
from fairseq.sequence_generator import EnsembleModel


class NoisyChannelSequenceGenerator(object):
    def __init__(
        self,
        combine_method,
        tgt_dict,
        src_dict=None,
        beam_size=1,
        max_len_a=0,
        max_len_b=200,
        min_len=1,
        len_penalty=1.0,
        unk_penalty=0.0,
        retain_dropout=False,
        temperature=1.0,
        match_source_len=False,
        no_repeat_ngram_size=0,
        normalize_scores=True,
        channel_models=None,
        k2=10,
        ch_weight=1.0,
        channel_scoring_type='log_norm',
        top_k_vocab=0,
        lm_models=None,
        lm_dict=None,
        lm_weight=1.0,
        normalize_lm_scores_by_tgt_len=False,
    ):
        """Generates translations of a given source sentence,
           using beam search with noisy channel decoding.

        Args:
            combine_method (string, optional): Method to combine direct, LM and
                channel model scores (default: None)
            tgt_dict (~fairseq.data.Dictionary): target dictionary
            src_dict (~fairseq.data.Dictionary): source dictionary
            beam_size (int, optional): beam width (default: 1)
            max_len_a/b (int, optional): generate sequences of maximum length
                ax + b, where x is the source length
            min_len (int, optional): the minimum length of the generated output
                (not including end-of-sentence)
            len_penalty (float, optional): length penalty, where <1.0 favors
                shorter, >1.0 favors longer sentences (default: 1.0)
            unk_penalty (float, optional): unknown word penalty, where <0
                produces more unks, >0 produces fewer (default: 0.0)
            retain_dropout (bool, optional): use dropout when generating
                (default: False)
            temperature (float, optional): temperature, where values
                >1.0 produce more uniform samples and values <1.0 produce
                sharper samples (default: 1.0)
            match_source_len (bool, optional): outputs should match the source
                length (default: False)
            no_repeat_ngram_size (int, optional): Size of n-grams that we avoid
                repeating in the generation (default: 0)
            normalize_scores (bool, optional): normalize scores by the length
                of the output (default: True)
            channel_models (List[~fairseq.models.FairseqModel]): ensemble of models
                translating from the target to the source
            k2 (int, optional): Top K2 candidates to score per beam at each step (default:10)
            ch_weight (int, optional): Weight associated with the channel model score
                assuming that the direct model score has weight 1.0 (default: 1.0)
            channel_scoring_type (str, optional): String specifying how to score
                the channel model (default: 'log_norm')
            top_k_vocab (int, optional): If `channel_scoring_type` is `'src_vocab'` or
                `'src_vocab_batched'`, then this parameter specifies the number of
                most frequent tokens to include in the channel model output vocabulary,
                in addition to the source tokens in the input batch (default: 0)
            lm_models (List[~fairseq.models.FairseqModel]): ensemble of models
                generating text in the target language
            lm_dict (~fairseq.data.Dictionary): LM Model dictionary
            lm_weight (int, optional): Weight associated with the LM model score
                assuming that the direct model score has weight 1.0 (default: 1.0)
            normalize_lm_scores_by_tgt_len (bool, optional): Should we normalize LM scores
                by the target length? By default, we normalize the combination of
                LM and channel model scores by the source length
        """
        self.pad = tgt_dict.pad()
        self.unk = tgt_dict.unk()
        self.eos = tgt_dict.eos()
        self.vocab_size = len(tgt_dict)
        self.beam_size = beam_size
        # the max beam size is the dictionary size - 1, since we never select pad
        self.beam_size = min(beam_size, self.vocab_size - 1)
        self.max_len_a = max_len_a
        self.max_len_b = max_len_b
        self.min_len = min_len
        self.normalize_scores = normalize_scores
        self.len_penalty = len_penalty
        self.unk_penalty = unk_penalty
        self.retain_dropout = retain_dropout
        self.temperature = temperature
        self.match_source_len = match_source_len
        self.no_repeat_ngram_size = no_repeat_ngram_size
        self.channel_models = channel_models
        self.src_dict = src_dict
        self.tgt_dict = tgt_dict
        self.combine_method = combine_method
        self.k2 = k2
        self.ch_weight = ch_weight
        self.channel_scoring_type = channel_scoring_type
        self.top_k_vocab = top_k_vocab
        self.lm_models = lm_models
        self.lm_dict = lm_dict
        self.lm_weight = lm_weight
        self.log_softmax_fn = torch.nn.LogSoftmax(dim=1)
        self.normalize_lm_scores_by_tgt_len = normalize_lm_scores_by_tgt_len

        self.share_tgt_dict = (self.lm_dict == self.tgt_dict)
        self.tgt_to_lm = make_dict2dict(tgt_dict, lm_dict)

        self.ch_scoring_bsz = 3072

        assert temperature > 0, '--temperature must be greater than 0'

        self.search = NoisyChannelBeamSearch(tgt_dict)

    @torch.no_grad()
    def generate(
        self,
        models,
        sample,
        prefix_tokens=None,
        bos_token=None,
        **kwargs
    ):
        """Generate a batch of translations.
        Args:
            models (List[~fairseq.models.FairseqModel]): ensemble of models
            sample (dict): batch
            prefix_tokens (torch.LongTensor, optional): force decoder to begin
                with these tokens
        """
        model = EnsembleModel(models)
        incremental_states = torch.jit.annotate(
            List[Dict[str, Dict[str, Optional[Tensor]]]],
            [
                torch.jit.annotate(Dict[str, Dict[str, Optional[Tensor]]], {})
                for i in range(model.models_size)
            ],
        )
        if not self.retain_dropout:
            model.eval()

        # model.forward normally channels prev_output_tokens into the decoder
        # separately, but SequenceGenerator directly calls model.encoder
        encoder_input = {
            k: v for k, v in sample['net_input'].items()
            if k != 'prev_output_tokens'
        }
        src_tokens = encoder_input['src_tokens']
        src_lengths_no_eos = (src_tokens.ne(self.eos) & src_tokens.ne(self.pad)).long().sum(dim=1)
        input_size = src_tokens.size()
        # batch dimension goes first followed by source lengths
        bsz = input_size[0]
        src_len = input_size[1]
        beam_size = self.beam_size

        if self.match_source_len:
            max_len = src_lengths_no_eos.max().item()
        else:
            max_len = min(
                int(self.max_len_a * src_len + self.max_len_b),
                # exclude the EOS marker
                model.max_decoder_positions() - 1,
            )

        # compute the encoder output for each beam
        encoder_outs = model.forward_encoder(encoder_input)
        new_order = torch.arange(bsz).view(-1, 1).repeat(1, beam_size).view(-1)
        new_order = new_order.to(src_tokens.device).long()
        encoder_outs = model.reorder_encoder_out(encoder_outs, new_order)

        src_lengths = encoder_input['src_lengths']
        # initialize buffers
        scores = src_tokens.new(bsz * beam_size, max_len + 1).float().fill_(0)
        lm_prefix_scores = src_tokens.new(bsz * beam_size).float().fill_(0)

        scores_buf = scores.clone()
        tokens = src_tokens.new(bsz * beam_size, max_len + 2).long().fill_(self.pad)
        tokens_buf = tokens.clone()
        tokens[:, 0] = self.eos if bos_token is None else bos_token

        # reorder source tokens so they may be used as a reference in generating P(S|T)
        src_tokens = reorder_all_tokens(src_tokens, src_lengths, self.src_dict.eos_index)

        src_tokens = src_tokens.repeat(1, beam_size).view(-1, src_len)
        src_lengths = src_lengths.view(bsz, -1).repeat(1, beam_size).view(bsz*beam_size, -1)

        attn, attn_buf = None, None
        nonpad_idxs = None

        # The cands_to_ignore indicates candidates that should be ignored.
        # For example, suppose we're sampling and have already finalized 2/5
        # samples. Then the cands_to_ignore would mark 2 positions as being ignored,
        # so that we only finalize the remaining 3 samples.
        cands_to_ignore = src_tokens.new_zeros(bsz, beam_size).eq(-1)  # forward and backward-compatible False mask

        # list of completed sentences
        finalized = [[] for i in range(bsz)]
        finished = [False for i in range(bsz)]
        num_remaining_sent = bsz

        # number of candidate hypos per step
        cand_size = 2 * beam_size  # 2 x beam size in case half are EOS

        # offset arrays for converting between different indexing schemes
        bbsz_offsets = (torch.arange(0, bsz) * beam_size).unsqueeze(1).type_as(tokens)
        cand_offsets = torch.arange(0, cand_size).type_as(tokens)

        # helper function for allocating buffers on the fly
        buffers = {}

        def buffer(name, type_of=tokens):  # noqa
            if name not in buffers:
                buffers[name] = type_of.new()
            return buffers[name]

        def is_finished(sent, step, unfin_idx):
            """
            Check whether we've finished generation for a given sentence, by
            comparing the worst score among finalized hypotheses to the best
            possible score among unfinalized hypotheses.
            """
            assert len(finalized[sent]) <= beam_size
            if len(finalized[sent]) == beam_size:
                return True
            return False

        def finalize_hypos(step, bbsz_idx, eos_scores, combined_noisy_channel_eos_scores):
            """
            Finalize the given hypotheses at this step, while keeping the total
            number of finalized hypotheses per sentence <= beam_size.

            Note: the input must be in the desired finalization order, so that
            hypotheses that appear earlier in the input are preferred to those
            that appear later.

            Args:
                step: current time step
                bbsz_idx: A vector of indices in the range [0, bsz*beam_size),
                    indicating which hypotheses to finalize
                eos_scores: A vector of the same size as bbsz_idx containing
                    fw scores for each hypothesis
                combined_noisy_channel_eos_scores: A vector of the same size as bbsz_idx containing
                    combined noisy channel scores for each hypothesis
            """
            assert bbsz_idx.numel() == eos_scores.numel()

            # clone relevant token and attention tensors
            tokens_clone = tokens.index_select(0, bbsz_idx)
            tokens_clone = tokens_clone[:, 1:step + 2]  # skip the first index, which is EOS
            assert not tokens_clone.eq(self.eos).any()
            tokens_clone[:, step] = self.eos
            attn_clone = attn.index_select(0, bbsz_idx)[:, :, 1:step+2] if attn is not None else None

            # compute scores per token position
            pos_scores = scores.index_select(0, bbsz_idx)[:, :step+1]
            pos_scores[:, step] = eos_scores
            # convert from cumulative to per-position scores
            pos_scores[:, 1:] = pos_scores[:, 1:] - pos_scores[:, :-1]

            # normalize sentence-level scores
            if self.normalize_scores:
                combined_noisy_channel_eos_scores /= (step + 1) ** self.len_penalty

            cum_unfin = []
            prev = 0
            for f in finished:
                if f:
                    prev += 1
                else:
                    cum_unfin.append(prev)

            sents_seen = set()
            for i, (idx, score) in enumerate(zip(bbsz_idx.tolist(), combined_noisy_channel_eos_scores.tolist())):
                unfin_idx = idx // beam_size
                sent = unfin_idx + cum_unfin[unfin_idx]

                sents_seen.add((sent, unfin_idx))

                if self.match_source_len and step > src_lengths_no_eos[unfin_idx]:
                    score = -math.inf

                def get_hypo():

                    if attn_clone is not None:
                        # remove padding tokens from attn scores
                        hypo_attn = attn_clone[i][nonpad_idxs[sent]]
                        _, alignment = hypo_attn.max(dim=0)
                    else:
                        hypo_attn = None
                        alignment = None

                    return {
                        'tokens': tokens_clone[i],
                        'score': score,
                        'attention': hypo_attn,  # src_len x tgt_len
                        'alignment': alignment,
                        'positional_scores': pos_scores[i],
                    }

                if len(finalized[sent]) < beam_size:
                    finalized[sent].append(get_hypo())

            newly_finished = []
            for sent, unfin_idx in sents_seen:
                # check termination conditions for this sentence
                if not finished[sent] and is_finished(sent, step, unfin_idx):
                    finished[sent] = True
                    newly_finished.append(unfin_idx)
            return newly_finished

        def noisy_channel_rescoring(lprobs, beam_size, bsz, src_tokens, tokens, k):
            """Rescore the top k hypothesis from each beam using noisy channel modeling
            Returns:
                new_fw_lprobs: the direct model probabilities after pruning the top k
                new_ch_lm_lprobs:  the combined channel and language model probabilities
                new_lm_lprobs: the language model probabilities after pruning the top k
            """
            with torch.no_grad():
                lprobs_size = lprobs.size()
                if prefix_tokens is not None and step < prefix_tokens.size(1):
                    probs_slice = lprobs.view(bsz, -1, lprobs.size(-1))[:, 0, :]
                    cand_scores = torch.gather(
                        probs_slice, dim=1,
                        index=prefix_tokens[:, step].view(-1, 1).data
                    ).expand(-1, beam_size).contiguous().view(bsz*beam_size, 1)
                    cand_indices = prefix_tokens[:, step].view(-1, 1).expand(bsz, beam_size).data.contiguous().view(bsz*beam_size, 1)

                    # need to calculate and save fw and lm probs for prefix tokens
                    fw_top_k = cand_scores
                    fw_top_k_idx = cand_indices
                    k = 1
                else:
                    # take the top k best words for every sentence in batch*beam
                    fw_top_k, fw_top_k_idx = torch.topk(lprobs.view(beam_size*bsz, -1), k=k)
                eos_idx = torch.nonzero(fw_top_k_idx.view(bsz*beam_size*k, -1) == self.eos)[:, 0]
                ch_scores = fw_top_k.new_full((beam_size*bsz*k, ), 0)
                src_size = torch.sum(src_tokens[:, :] != self.src_dict.pad_index, dim=1, keepdim=True, dtype=fw_top_k.dtype)

                if self.combine_method != "lm_only":
                    temp_src_tokens_full = src_tokens[:, :].repeat(1, k).view(bsz*beam_size*k, -1)
                    not_padding = temp_src_tokens_full[:, 1:] != self.src_dict.pad_index
                    cur_tgt_size = step+2

                    # add eos to all candidate sentences except those that already end in eos
                    eos_tokens = tokens[:, 0].repeat(1, k).view(-1, 1)
                    eos_tokens[eos_idx] = self.tgt_dict.pad_index

                    if step == 0:
                        channel_input = torch.cat((fw_top_k_idx.view(-1, 1), eos_tokens), 1)
                    else:
                        # move eos from beginning to end of target sentence
                        channel_input = torch.cat((tokens[:, 1:step + 1].repeat(1, k).view(-1, step), fw_top_k_idx.view(-1, 1), eos_tokens), 1)

                    ch_input_lengths = torch.tensor(np.full(channel_input.size(0), cur_tgt_size))
                    ch_input_lengths[eos_idx] = cur_tgt_size-1
                    if self.channel_scoring_type == "unnormalized":
                        ch_encoder_output = channel_model.encoder(channel_input, src_lengths=ch_input_lengths)
                        ch_decoder_output, _ = channel_model.decoder(temp_src_tokens_full, encoder_out=ch_encoder_output, features_only=True)
                        del ch_encoder_output
                        ch_intermed_scores = channel_model.decoder.unnormalized_scores_given_target(ch_decoder_output, target_ids=temp_src_tokens_full[:, 1:])
                        ch_intermed_scores = ch_intermed_scores.float()
                        ch_intermed_scores *= not_padding.float()
                        ch_scores = torch.sum(ch_intermed_scores, dim=1)
                    elif self.channel_scoring_type == "k2_separate":
                        for k_idx in range(k):
                            k_eos_tokens = eos_tokens[k_idx::k, :]
                            if step == 0:
                                k_ch_input = torch.cat((fw_top_k_idx[:, k_idx:k_idx+1], k_eos_tokens), 1)
                            else:
                                # move eos from beginning to end of target sentence
                                k_ch_input = torch.cat((tokens[:, 1:step + 1], fw_top_k_idx[:, k_idx:k_idx+1], k_eos_tokens), 1)
                            k_ch_input_lengths = ch_input_lengths[k_idx::k]
                            k_ch_output = channel_model(k_ch_input, k_ch_input_lengths, src_tokens)
                            k_ch_lprobs = channel_model.get_normalized_probs(k_ch_output, log_probs=True)
                            k_ch_intermed_scores = torch.gather(k_ch_lprobs[:, :-1, :], 2, src_tokens[:, 1:].unsqueeze(2)).squeeze(2)
                            k_ch_intermed_scores *= not_padding.float()
                            ch_scores[k_idx::k] = torch.sum(k_ch_intermed_scores, dim=1)
                    elif self.channel_scoring_type == "src_vocab":
                        ch_encoder_output = channel_model.encoder(channel_input, src_lengths=ch_input_lengths)
                        ch_decoder_output, _ = channel_model.decoder(temp_src_tokens_full, encoder_out=ch_encoder_output, features_only=True)

                        del ch_encoder_output
                        ch_lprobs = normalized_scores_with_batch_vocab(
                            channel_model.decoder,
                            ch_decoder_output, src_tokens, k, bsz, beam_size,
                            self.src_dict.pad_index, top_k=self.top_k_vocab)
                        ch_scores = torch.sum(ch_lprobs, dim=1)
                    elif self.channel_scoring_type == "src_vocab_batched":
                        ch_bsz_size = temp_src_tokens_full.shape[0]
                        ch_lprobs_list = [None] * len(range(0, ch_bsz_size, self.ch_scoring_bsz))
                        for i, start_idx in enumerate(range(0, ch_bsz_size, self.ch_scoring_bsz)):
                            end_idx = min(start_idx + self.ch_scoring_bsz, ch_bsz_size)
                            temp_src_tokens_full_batch = temp_src_tokens_full[start_idx:end_idx, :]
                            channel_input_batch = channel_input[start_idx:end_idx, :]
                            ch_input_lengths_batch = ch_input_lengths[start_idx:end_idx]
                            ch_encoder_output_batch = channel_model.encoder(channel_input_batch, src_lengths=ch_input_lengths_batch)
                            ch_decoder_output_batch, _ = channel_model.decoder(temp_src_tokens_full_batch, encoder_out=ch_encoder_output_batch, features_only=True)
                            ch_lprobs_list[i] = normalized_scores_with_batch_vocab(
                                channel_model.decoder,
                                ch_decoder_output_batch, src_tokens, k, bsz, beam_size,
                                self.src_dict.pad_index, top_k=self.top_k_vocab,
                                start_idx=start_idx, end_idx=end_idx)
                        ch_lprobs = torch.cat(ch_lprobs_list, dim=0)
                        ch_scores = torch.sum(ch_lprobs, dim=1)
                    else:
                        ch_output = channel_model(channel_input, ch_input_lengths, temp_src_tokens_full)
                        ch_lprobs = channel_model.get_normalized_probs(ch_output, log_probs=True)
                        ch_intermed_scores = torch.gather(ch_lprobs[:, :-1, :], 2, temp_src_tokens_full[:, 1:].unsqueeze(2)).squeeze().view(bsz*beam_size*k, -1)
                        ch_intermed_scores *= not_padding.float()
                        ch_scores = torch.sum(ch_intermed_scores, dim=1)

                else:
                    cur_tgt_size = 0
                ch_scores = ch_scores.view(bsz*beam_size, k)
                expanded_lm_prefix_scores = lm_prefix_scores.unsqueeze(1).expand(-1, k).flatten()

                if self.share_tgt_dict:
                    lm_scores = get_lm_scores(lm, tokens[:, :step + 1].view(-1, step+1), lm_incremental_states, fw_top_k_idx.view(-1, 1), torch.tensor(np.full(tokens.size(0), step+1)), k)
                else:
                    new_lm_input = dict2dict(tokens[:, :step + 1].view(-1, step+1), self.tgt_to_lm)
                    new_cands = dict2dict(fw_top_k_idx.view(-1, 1), self.tgt_to_lm)
                    lm_scores = get_lm_scores(lm, new_lm_input, lm_incremental_states, new_cands, torch.tensor(np.full(tokens.size(0), step+1)), k)

                lm_scores.add_(expanded_lm_prefix_scores)
                ch_lm_scores = combine_ch_lm(self.combine_method, ch_scores, lm_scores, src_size, cur_tgt_size)
                # initialize all as min value
                new_fw_lprobs = ch_scores.new(lprobs_size).fill_(-1e17).view(bsz*beam_size, -1)
                new_ch_lm_lprobs = ch_scores.new(lprobs_size).fill_(-1e17).view(bsz*beam_size, -1)
                new_lm_lprobs = ch_scores.new(lprobs_size).fill_(-1e17).view(bsz*beam_size, -1)
                new_fw_lprobs[:, self.pad] = -math.inf
                new_ch_lm_lprobs[:, self.pad] = -math.inf
                new_lm_lprobs[:, self.pad] = -math.inf

                new_fw_lprobs.scatter_(1, fw_top_k_idx, fw_top_k)
                new_ch_lm_lprobs.scatter_(1, fw_top_k_idx, ch_lm_scores)
                new_lm_lprobs.scatter_(1, fw_top_k_idx, lm_scores.view(-1, k))
                return new_fw_lprobs, new_ch_lm_lprobs, new_lm_lprobs

        def combine_ch_lm(combine_type, ch_scores, lm_scores1, src_size, tgt_size):
            if self.channel_scoring_type == "unnormalized":
                ch_scores = self.log_softmax_fn(
                    ch_scores.view(-1, self.beam_size * self.k2)
                ).view(ch_scores.shape)
            ch_scores = ch_scores * self.ch_weight
            lm_scores1 = lm_scores1 * self.lm_weight

            if combine_type == "lm_only":
                # log P(T|S) + log P(T)
                ch_scores = lm_scores1.view(ch_scores.size())
            elif combine_type == "noisy_channel":
                # 1/t log P(T|S) + 1/s log P(S|T) + 1/t log P(T)
                if self.normalize_lm_scores_by_tgt_len:
                    ch_scores.div_(src_size)
                    lm_scores_norm = lm_scores1.view(ch_scores.size()).div(tgt_size)
                    ch_scores.add_(lm_scores_norm)
                # 1/t log P(T|S) + 1/s log P(S|T) + 1/s log P(T)
                else:
                    ch_scores.add_(lm_scores1.view(ch_scores.size()))
                    ch_scores.div_(src_size)

            return ch_scores

        if self.channel_models is not None:
            channel_model = self.channel_models[0]  # assume only one channel_model model
        else:
            channel_model = None

        lm = EnsembleModel(self.lm_models)
        lm_incremental_states = torch.jit.annotate(
            List[Dict[str, Dict[str, Optional[Tensor]]]],
            [
                torch.jit.annotate(Dict[str, Dict[str, Optional[Tensor]]], {})
                for i in range(lm.models_size)
            ],
        )

        reorder_state = None
        batch_idxs = None
        for step in range(max_len + 1):  # one extra step for EOS marker
            # reorder decoder internal states based on the prev choice of beams
            if reorder_state is not None:
                if batch_idxs is not None:
                    # update beam indices to take into account removed sentences
                    corr = batch_idxs - torch.arange(batch_idxs.numel()).type_as(batch_idxs)
                    reorder_state.view(-1, beam_size).add_(corr.unsqueeze(-1) * beam_size)
                model.reorder_incremental_state(incremental_states, reorder_state)
                encoder_outs = model.reorder_encoder_out(encoder_outs, reorder_state)

                lm.reorder_incremental_state(lm_incremental_states, reorder_state)

            fw_lprobs, avg_attn_scores = model.forward_decoder(
                tokens[:, :step + 1], encoder_outs, incremental_states, temperature=self.temperature,
            )

            fw_lprobs[:, self.pad] = -math.inf  # never select pad
            fw_lprobs[:, self.unk] -= self.unk_penalty  # apply unk penalty
            fw_lprobs, ch_lm_lprobs, lm_lprobs = noisy_channel_rescoring(fw_lprobs, beam_size, bsz, src_tokens, tokens, self.k2)

            # handle min and max length constraints
            if step >= max_len:
                fw_lprobs[:, :self.eos] = -math.inf
                fw_lprobs[:, self.eos + 1:] = -math.inf
            elif step < self.min_len:
                fw_lprobs[:, self.eos] = -math.inf

            # handle prefix tokens (possibly with different lengths)
            if prefix_tokens is not None and step < prefix_tokens.size(1):
                prefix_toks = prefix_tokens[:, step].unsqueeze(-1).repeat(1, beam_size).view(-1)
                prefix_mask = prefix_toks.ne(self.pad)

                prefix_fw_lprobs = fw_lprobs.gather(-1, prefix_toks.unsqueeze(-1))
                fw_lprobs[prefix_mask] = -math.inf
                fw_lprobs[prefix_mask] = fw_lprobs[prefix_mask].scatter_(
                    -1, prefix_toks[prefix_mask].unsqueeze(-1), prefix_fw_lprobs
                )

                prefix_ch_lm_lprobs = ch_lm_lprobs.gather(-1, prefix_toks.unsqueeze(-1))
                ch_lm_lprobs[prefix_mask] = -math.inf
                ch_lm_lprobs[prefix_mask] = ch_lm_lprobs[prefix_mask].scatter_(
                    -1, prefix_toks[prefix_mask].unsqueeze(-1), prefix_ch_lm_lprobs
                )

                prefix_lm_lprobs = lm_lprobs.gather(-1, prefix_toks.unsqueeze(-1))
                lm_lprobs[prefix_mask] = -math.inf
                lm_lprobs[prefix_mask] = lm_lprobs[prefix_mask].scatter_(
                    -1, prefix_toks[prefix_mask].unsqueeze(-1), prefix_lm_lprobs
                )

                # if prefix includes eos, then we should make sure tokens and
                # scores are the same across all beams
                eos_mask = prefix_toks.eq(self.eos)
                if eos_mask.any():
                    # validate that the first beam matches the prefix
                    first_beam = tokens[eos_mask].view(-1, beam_size, tokens.size(-1))[:, 0, 1:step + 1]
                    eos_mask_batch_dim = eos_mask.view(-1, beam_size)[:, 0]
                    target_prefix = prefix_tokens[eos_mask_batch_dim][:, :step]
                    assert (first_beam == target_prefix).all()

                    def replicate_first_beam(tensor, mask):
                        tensor = tensor.view(-1, beam_size, tensor.size(-1))
                        tensor[mask] = tensor[mask][:, :1, :]
                        return tensor.view(-1, tensor.size(-1))

                    # copy tokens, scores and lprobs from the first beam to all beams
                    tokens = replicate_first_beam(tokens, eos_mask_batch_dim)
                    scores = replicate_first_beam(scores, eos_mask_batch_dim)

                    fw_lprobs = replicate_first_beam(fw_lprobs, eos_mask_batch_dim)
                    ch_lm_lprobs = replicate_first_beam(ch_lm_lprobs, eos_mask_batch_dim)
                    lm_lprobs = replicate_first_beam(lm_lprobs, eos_mask_batch_dim)

            if self.no_repeat_ngram_size > 0:
                # for each beam and batch sentence, generate a list of previous ngrams
                gen_ngrams = [{} for bbsz_idx in range(bsz * beam_size)]
                for bbsz_idx in range(bsz * beam_size):
                    gen_tokens = tokens[bbsz_idx].tolist()
                    for ngram in zip(*[gen_tokens[i:] for i in range(self.no_repeat_ngram_size)]):
                        gen_ngrams[bbsz_idx][tuple(ngram[:-1])] = \
                                gen_ngrams[bbsz_idx].get(tuple(ngram[:-1]), []) + [ngram[-1]]

            # Record attention scores
            if avg_attn_scores is not None:
                if attn is None:
                    attn = scores.new(bsz * beam_size, src_tokens.size(1), max_len + 2)
                    attn_buf = attn.clone()
                    nonpad_idxs = src_tokens.ne(self.pad)
                attn[:, :, step + 1].copy_(avg_attn_scores)

            scores = scores.type_as(fw_lprobs)
            scores_buf = scores_buf.type_as(fw_lprobs)

            self.search.set_src_lengths(src_lengths_no_eos)

            if self.no_repeat_ngram_size > 0:
                def calculate_banned_tokens(bbsz_idx):
                    # before decoding the next token, prevent decoding of ngrams that have already appeared
                    ngram_index = tuple(tokens[bbsz_idx, step + 2 - self.no_repeat_ngram_size:step + 1].tolist())
                    return gen_ngrams[bbsz_idx].get(ngram_index, [])

                if step + 2 - self.no_repeat_ngram_size >= 0:
                    # no banned tokens if we haven't generated no_repeat_ngram_size tokens yet
                    banned_tokens = [calculate_banned_tokens(bbsz_idx) for bbsz_idx in range(bsz * beam_size)]
                else:
                    banned_tokens = [[] for bbsz_idx in range(bsz * beam_size)]

                for bbsz_idx in range(bsz * beam_size):
                    fw_lprobs[bbsz_idx, banned_tokens[bbsz_idx]] = -math.inf

            combined_noisy_channel_scores, fw_lprobs_top_k, lm_lprobs_top_k, cand_indices, cand_beams = self.search.step(
                step,
                fw_lprobs.view(bsz, -1, self.vocab_size),
                scores.view(bsz, beam_size, -1)[:, :, :step], ch_lm_lprobs.view(bsz, -1, self.vocab_size),
                lm_lprobs.view(bsz, -1, self.vocab_size), self.combine_method
            )

            # cand_bbsz_idx contains beam indices for the top candidate
            # hypotheses, with a range of values: [0, bsz*beam_size),
            # and dimensions: [bsz, cand_size]
            cand_bbsz_idx = cand_beams.add(bbsz_offsets)

            # finalize hypotheses that end in eos (except for candidates to be ignored)
            eos_mask = cand_indices.eq(self.eos)
            eos_mask[:, :beam_size] &= ~cands_to_ignore

            # only consider eos when it's among the top beam_size indices
            eos_bbsz_idx = torch.masked_select(
                cand_bbsz_idx[:, :beam_size], mask=eos_mask[:, :beam_size]
            )

            finalized_sents = set()
            if eos_bbsz_idx.numel() > 0:
                eos_scores = torch.masked_select(
                    fw_lprobs_top_k[:, :beam_size], mask=eos_mask[:, :beam_size]
                )
                combined_noisy_channel_eos_scores = torch.masked_select(
                    combined_noisy_channel_scores[:, :beam_size],
                    mask=eos_mask[:, :beam_size],
                )

                # finalize hypo using channel model score
                finalized_sents = finalize_hypos(
                    step, eos_bbsz_idx, eos_scores, combined_noisy_channel_eos_scores)

                num_remaining_sent -= len(finalized_sents)

            assert num_remaining_sent >= 0
            if num_remaining_sent == 0:
                break

            if len(finalized_sents) > 0:
                new_bsz = bsz - len(finalized_sents)

                # construct batch_idxs which holds indices of batches to keep for the next pass
                batch_mask = cand_indices.new_ones(bsz)
                batch_mask[cand_indices.new(finalized_sents)] = 0
                batch_idxs = torch.nonzero(batch_mask).squeeze(-1)

                eos_mask = eos_mask[batch_idxs]
                cand_beams = cand_beams[batch_idxs]
                bbsz_offsets.resize_(new_bsz, 1)
                cand_bbsz_idx = cand_beams.add(bbsz_offsets)

                lm_lprobs_top_k = lm_lprobs_top_k[batch_idxs]

                fw_lprobs_top_k = fw_lprobs_top_k[batch_idxs]
                cand_indices = cand_indices[batch_idxs]
                if prefix_tokens is not None:
                    prefix_tokens = prefix_tokens[batch_idxs]
                src_lengths_no_eos = src_lengths_no_eos[batch_idxs]
                cands_to_ignore = cands_to_ignore[batch_idxs]

                scores = scores.view(bsz, -1)[batch_idxs].view(new_bsz * beam_size, -1)
                scores_buf.resize_as_(scores)
                tokens = tokens.view(bsz, -1)[batch_idxs].view(new_bsz * beam_size, -1)
                tokens_buf.resize_as_(tokens)
                src_tokens = src_tokens.view(bsz, -1)[batch_idxs].view(new_bsz * beam_size, -1)
                src_lengths = src_lengths.view(bsz, -1)[batch_idxs].view(new_bsz * beam_size, -1)
                lm_prefix_scores = lm_prefix_scores.view(bsz, -1)[batch_idxs].view(new_bsz * beam_size, -1).squeeze()

                if attn is not None:
                    attn = attn.view(bsz, -1)[batch_idxs].view(new_bsz * beam_size, attn.size(1), -1)
                    attn_buf.resize_as_(attn)
                bsz = new_bsz
            else:
                batch_idxs = None

            # Set active_mask so that values > cand_size indicate eos or
            # ignored hypos and values < cand_size indicate candidate
            # active hypos. After this, the min values per row are the top
            # candidate active hypos.
            eos_mask[:, :beam_size] |= cands_to_ignore
            active_mask = torch.add(
                eos_mask.type_as(cand_offsets) * cand_size,
                cand_offsets[: eos_mask.size(1)],
            )

            # get the top beam_size active hypotheses, which are just the hypos
            # with the smallest values in active_mask
            active_hypos, new_cands_to_ignore = buffer('active_hypos'), buffer('new_cands_to_ignore')
            torch.topk(
                active_mask, k=beam_size, dim=1, largest=False,
                out=(new_cands_to_ignore, active_hypos)
            )

            # update cands_to_ignore to ignore any finalized hypos
            cands_to_ignore = new_cands_to_ignore.ge(cand_size)[:, :beam_size]
            assert (~cands_to_ignore).any(dim=1).all()

            active_bbsz_idx = buffer('active_bbsz_idx')
            torch.gather(
                cand_bbsz_idx, dim=1, index=active_hypos,
                out=active_bbsz_idx,
            )
            active_scores = torch.gather(
                fw_lprobs_top_k, dim=1, index=active_hypos,
                out=scores[:, step].view(bsz, beam_size),
            )

            active_bbsz_idx = active_bbsz_idx.view(-1)
            active_scores = active_scores.view(-1)

            # copy tokens and scores for active hypotheses
            torch.index_select(
                tokens[:, :step + 1], dim=0, index=active_bbsz_idx,
                out=tokens_buf[:, :step + 1],
            )
            torch.gather(
                cand_indices, dim=1, index=active_hypos,
                out=tokens_buf.view(bsz, beam_size, -1)[:, :, step + 1],
            )
            if step > 0:
                torch.index_select(
                    scores[:, :step], dim=0, index=active_bbsz_idx,
                    out=scores_buf[:, :step],
                )
            torch.gather(
                fw_lprobs_top_k, dim=1, index=active_hypos,
                out=scores_buf.view(bsz, beam_size, -1)[:, :, step],
            )
            torch.gather(
                lm_lprobs_top_k, dim=1, index=active_hypos,
                out=lm_prefix_scores.view(bsz, beam_size)
            )

            # copy attention for active hypotheses
            if attn is not None:
                torch.index_select(
                    attn[:, :, :step + 2], dim=0, index=active_bbsz_idx,
                    out=attn_buf[:, :, :step + 2],
                )

            # swap buffers
            tokens, tokens_buf = tokens_buf, tokens
            scores, scores_buf = scores_buf, scores
            if attn is not None:
                attn, attn_buf = attn_buf, attn

            # reorder incremental state in decoder
            reorder_state = active_bbsz_idx

        # sort by score descending
        for sent in range(len(finalized)):
            finalized[sent] = sorted(finalized[sent], key=lambda r: r['score'], reverse=True)

        return finalized


def get_lm_scores(model, input_tokens, incremental_states, cand_tokens, input_len, k):
    with torch.no_grad():
        lm_lprobs, avg_attn_scores = model.forward_decoder(
            input_tokens, encoder_outs=None, incremental_states=incremental_states,
        )

        lm_lprobs_size = lm_lprobs.size(0)
        probs_next_wrd = torch.gather(lm_lprobs.repeat(1, k).view(lm_lprobs_size*k, -1), 1, cand_tokens).squeeze().view(-1)

        return probs_next_wrd


def make_dict2dict(old_dict, new_dict):
    dict2dict_map = {}
    for sym in old_dict.symbols:
        dict2dict_map[old_dict.index(sym)] = new_dict.index(sym)
    return dict2dict_map


def dict2dict(tokens, dict2dict_map):
    if tokens.device == torch.device('cpu'):
        tokens_tmp = tokens
    else:
        tokens_tmp = tokens.cpu()
    return tokens_tmp.map_(
        tokens_tmp,
        lambda _, val, dict2dict_map=dict2dict_map : dict2dict_map[float(val)]
    ).to(tokens.device)


def reorder_tokens(tokens, lengths, eos):
    # reorder source tokens so they may be used as reference for P(S|T)
    return torch.cat((tokens.new([eos]), tokens[-lengths:-1], tokens[:-lengths]), 0)


def reorder_all_tokens(tokens, lengths, eos):
    # used to reorder src tokens from [<pad> <w1> <w2> .. <eos>] to [<eos> <w1> <w2>...<pad>]
    # so source tokens can be used to predict P(S|T)
    return torch.stack([reorder_tokens(token, length, eos) for token, length in zip(tokens, lengths)])


def normalized_scores_with_batch_vocab(
        model_decoder, features, target_ids, k, bsz, beam_size,
        pad_idx, top_k=0, vocab_size_meter=None, start_idx=None,
        end_idx=None, **kwargs):
    """
        Get normalized probabilities (or log probs) from a net's output
        w.r.t. vocab consisting of target IDs in the batch
    """
    if model_decoder.adaptive_softmax is None:
        weight = model_decoder.output_projection.weight
        vocab_ids = torch.unique(
            torch.cat(
                (torch.unique(target_ids), torch.arange(top_k, device=target_ids.device))
            )
        )
        id_map = dict(zip(vocab_ids.tolist(), range(len(vocab_ids))))
        mapped_target_ids = target_ids.cpu().apply_(
            lambda x, id_map=id_map: id_map[x]
        ).to(target_ids.device)
        expanded_target_ids = mapped_target_ids[:, :].repeat(1, k).view(bsz*beam_size*k, -1)
        if start_idx is not None and end_idx is not None:
            expanded_target_ids = expanded_target_ids[start_idx:end_idx, :]
        logits = F.linear(features, weight[vocab_ids, :])
        log_softmax = F.log_softmax(logits, dim=-1, dtype=torch.float32)
        intermed_scores = torch.gather(
            log_softmax[:, :-1, :],
            2,
            expanded_target_ids[:, 1:].unsqueeze(2),
        ).squeeze()
        not_padding = expanded_target_ids[:, 1:] != pad_idx
        intermed_scores *= not_padding.float()
        return intermed_scores
    else:
        raise ValueError("adaptive softmax doesn't work with " +
                         "`normalized_scores_with_batch_vocab()`")