OFA-OCR / fairseq /examples /speech_to_text /docs /simulst_mustc_example.md
JustinLin610's picture
first commit
ee21b96
|
raw
history blame
No virus
7.77 kB
# Simultaneous Speech Translation (SimulST) on MuST-C
This is a tutorial of training and evaluating a transformer *wait-k* simultaneous model on MUST-C English-Germen Dataset, from [SimulMT to SimulST: Adapting Simultaneous Text Translation to End-to-End Simultaneous Speech Translation](https://www.aclweb.org/anthology/2020.aacl-main.58.pdf).
[MuST-C](https://www.aclweb.org/anthology/N19-1202) is multilingual speech-to-text translation corpus with 8-language translations on English TED talks.
## Data Preparation
This section introduces the data preparation for training and evaluation.
If you only want to evaluate the model, please jump to [Inference & Evaluation](#inference--evaluation)
[Download](https://ict.fbk.eu/must-c) and unpack MuST-C data to a path
`${MUSTC_ROOT}/en-${TARGET_LANG_ID}`, then preprocess it with
```bash
# Additional Python packages for S2T data processing/model training
pip install pandas torchaudio sentencepiece
# Generate TSV manifests, features, vocabulary,
# global cepstral and mean estimation,
# and configuration for each language
cd fairseq
python examples/speech_to_text/prep_mustc_data.py \
--data-root ${MUSTC_ROOT} --task asr \
--vocab-type unigram --vocab-size 10000 \
--cmvn-type global
python examples/speech_to_text/prep_mustc_data.py \
--data-root ${MUSTC_ROOT} --task st \
--vocab-type unigram --vocab-size 10000 \
--cmvn-type global
```
## ASR Pretraining
We need a pretrained offline ASR model. Assuming the save directory of the ASR model is `${ASR_SAVE_DIR}`.
The following command (and the subsequent training commands in this tutorial) assume training on 1 GPU (you can also train on 8 GPUs and remove the `--update-freq 8` option).
```
fairseq-train ${MUSTC_ROOT}/en-de \
--config-yaml config_asr.yaml --train-subset train_asr --valid-subset dev_asr \
--save-dir ${ASR_SAVE_DIR} --num-workers 4 --max-tokens 40000 --max-update 100000 \
--task speech_to_text --criterion label_smoothed_cross_entropy --report-accuracy \
--arch convtransformer_espnet --optimizer adam --lr 0.0005 --lr-scheduler inverse_sqrt \
--warmup-updates 10000 --clip-norm 10.0 --seed 1 --update-freq 8
```
A pretrained ASR checkpoint can be downloaded [here](https://dl.fbaipublicfiles.com/simultaneous_translation/must_c_v1_en_de_pretrained_asr)
## Simultaneous Speech Translation Training
### Wait-K with fixed pre-decision module
Fixed pre-decision indicates that the model operate simultaneous policy on the boundaries of fixed chunks.
Here is a example of fixed pre-decision ratio 7 (the simultaneous decision is made every 7 encoder states) and
a wait-3 policy model. Assuming the save directory is `${ST_SAVE_DIR}`
```bash
fairseq-train ${MUSTC_ROOT}/en-de \
--config-yaml config_st.yaml --train-subset train_st --valid-subset dev_st \
--save-dir ${ST_SAVE_DIR} --num-workers 8 \
--optimizer adam --lr 0.0001 --lr-scheduler inverse_sqrt --clip-norm 10.0 \
--criterion label_smoothed_cross_entropy \
--warmup-updates 4000 --max-update 100000 --max-tokens 40000 --seed 2 \
--load-pretrained-encoder-from ${ASR_SAVE_DIR}/checkpoint_best.pt \
--task speech_to_text \
--arch convtransformer_simul_trans_espnet \
--simul-type waitk_fixed_pre_decision \
--waitk-lagging 3 \
--fixed-pre-decision-ratio 7 \
--update-freq 8
```
### Monotonic multihead attention with fixed pre-decision module
```
fairseq-train ${MUSTC_ROOT}/en-de \
--config-yaml config_st.yaml --train-subset train_st --valid-subset dev_st \
--save-dir ${ST_SAVE_DIR} --num-workers 8 \
--optimizer adam --lr 0.0001 --lr-scheduler inverse_sqrt --clip-norm 10.0 \
--warmup-updates 4000 --max-update 100000 --max-tokens 40000 --seed 2 \
--load-pretrained-encoder-from ${ASR_SAVE_DIR}/${CHECKPOINT_FILENAME} \
--task speech_to_text \
--criterion latency_augmented_label_smoothed_cross_entropy \
--latency-weight-avg 0.1 \
--arch convtransformer_simul_trans_espnet \
--simul-type infinite_lookback_fixed_pre_decision \
--fixed-pre-decision-ratio 7 \
--update-freq 8
```
## Inference & Evaluation
[SimulEval](https://github.com/facebookresearch/SimulEval) is used for evaluation.
The following command is for evaluation.
```
git clone https://github.com/facebookresearch/SimulEval.git
cd SimulEval
pip install -e .
simuleval \
--agent ${FAIRSEQ}/examples/speech_to_text/simultaneous_translation/agents/fairseq_simul_st_agent.py
--source ${SRC_LIST_OF_AUDIO}
--target ${TGT_FILE}
--data-bin ${MUSTC_ROOT}/en-de \
--config config_st.yaml \
--model-path ${ST_SAVE_DIR}/${CHECKPOINT_FILENAME} \
--output ${OUTPUT} \
--scores
```
The source file `${SRC_LIST_OF_AUDIO}` is a list of paths of audio files. Assuming your audio files stored at `/home/user/data`,
it should look like this
```bash
/home/user/data/audio-1.wav
/home/user/data/audio-2.wav
```
Each line of target file `${TGT_FILE}` is the translation for each audio file input.
```bash
Translation_1
Translation_2
```
The evaluation runs on the original MUSTC segmentation.
The following command will generate the wav list and text file for a evaluation set `${SPLIT}` (chose from `dev`, `tst-COMMON` and `tst-HE`) in MUSTC to `${EVAL_DATA}`.
```bash
python ${FAIRSEQ}/examples/speech_to_text/seg_mustc_data.py \
--data-root ${MUSTC_ROOT} --lang de \
--split ${SPLIT} --task st \
--output ${EVAL_DATA}
```
The `--data-bin` and `--config` should be the same in previous section if you prepare the data from the scratch.
If only for evaluation, a prepared data directory can be found [here](https://dl.fbaipublicfiles.com/simultaneous_translation/must_c_v1.0_en_de_databin.tgz). It contains
- `spm_unigram10000_st.model`: a sentencepiece model binary.
- `spm_unigram10000_st.txt`: the dictionary file generated by the sentencepiece model.
- `gcmvn.npz`: the binary for global cepstral mean and variance.
- `config_st.yaml`: the config yaml file. It looks like this.
You will need to set the absolute paths for `sentencepiece_model` and `stats_npz_path` if the data directory is downloaded.
```yaml
bpe_tokenizer:
bpe: sentencepiece
sentencepiece_model: ABS_PATH_TO_SENTENCEPIECE_MODEL
global_cmvn:
stats_npz_path: ABS_PATH_TO_GCMVN_FILE
input_channels: 1
input_feat_per_channel: 80
sampling_alpha: 1.0
specaugment:
freq_mask_F: 27
freq_mask_N: 1
time_mask_N: 1
time_mask_T: 100
time_mask_p: 1.0
time_wrap_W: 0
transforms:
'*':
- global_cmvn
_train:
- global_cmvn
- specaugment
vocab_filename: spm_unigram10000_st.txt
```
Notice that once a `--data-bin` is set, the `--config` is the base name of the config yaml, not the full path.
Set `--model-path` to the model checkpoint.
A pretrained checkpoint can be downloaded from [here](https://dl.fbaipublicfiles.com/simultaneous_translation/convtransformer_wait5_pre7), which is a wait-5 model with a pre-decision of 280 ms.
The result of this model on `tst-COMMON` is:
```bash
{
"Quality": {
"BLEU": 13.94974229366959
},
"Latency": {
"AL": 1751.8031870037803,
"AL_CA": 2338.5911762796536,
"AP": 0.7931395378788959,
"AP_CA": 0.9405103863210942,
"DAL": 1987.7811616943081,
"DAL_CA": 2425.2751560926167
}
}
```
If `--output ${OUTPUT}` option is used, the detailed log and scores will be stored under the `${OUTPUT}` directory.
The quality is measured by detokenized BLEU. So make sure that the predicted words sent to the server are detokenized.
The latency metrics are
* Average Proportion
* Average Lagging
* Differentiable Average Lagging
Again they will also be evaluated on detokenized text.