# Simultaneous Speech Translation (SimulST) on MuST-C This is a tutorial of training and evaluating a transformer *wait-k* simultaneous model on MUST-C English-Germen Dataset, from [SimulMT to SimulST: Adapting Simultaneous Text Translation to End-to-End Simultaneous Speech Translation](https://www.aclweb.org/anthology/2020.aacl-main.58.pdf). [MuST-C](https://www.aclweb.org/anthology/N19-1202) is multilingual speech-to-text translation corpus with 8-language translations on English TED talks. ## Data Preparation This section introduces the data preparation for training and evaluation. If you only want to evaluate the model, please jump to [Inference & Evaluation](#inference--evaluation) [Download](https://ict.fbk.eu/must-c) and unpack MuST-C data to a path `${MUSTC_ROOT}/en-${TARGET_LANG_ID}`, then preprocess it with ```bash # Additional Python packages for S2T data processing/model training pip install pandas torchaudio sentencepiece # Generate TSV manifests, features, vocabulary, # global cepstral and mean estimation, # and configuration for each language cd fairseq python examples/speech_to_text/prep_mustc_data.py \ --data-root ${MUSTC_ROOT} --task asr \ --vocab-type unigram --vocab-size 10000 \ --cmvn-type global python examples/speech_to_text/prep_mustc_data.py \ --data-root ${MUSTC_ROOT} --task st \ --vocab-type unigram --vocab-size 10000 \ --cmvn-type global ``` ## ASR Pretraining We need a pretrained offline ASR model. Assuming the save directory of the ASR model is `${ASR_SAVE_DIR}`. The following command (and the subsequent training commands in this tutorial) assume training on 1 GPU (you can also train on 8 GPUs and remove the `--update-freq 8` option). ``` fairseq-train ${MUSTC_ROOT}/en-de \ --config-yaml config_asr.yaml --train-subset train_asr --valid-subset dev_asr \ --save-dir ${ASR_SAVE_DIR} --num-workers 4 --max-tokens 40000 --max-update 100000 \ --task speech_to_text --criterion label_smoothed_cross_entropy --report-accuracy \ --arch convtransformer_espnet --optimizer adam --lr 0.0005 --lr-scheduler inverse_sqrt \ --warmup-updates 10000 --clip-norm 10.0 --seed 1 --update-freq 8 ``` A pretrained ASR checkpoint can be downloaded [here](https://dl.fbaipublicfiles.com/simultaneous_translation/must_c_v1_en_de_pretrained_asr) ## Simultaneous Speech Translation Training ### Wait-K with fixed pre-decision module Fixed pre-decision indicates that the model operate simultaneous policy on the boundaries of fixed chunks. Here is a example of fixed pre-decision ratio 7 (the simultaneous decision is made every 7 encoder states) and a wait-3 policy model. Assuming the save directory is `${ST_SAVE_DIR}` ```bash fairseq-train ${MUSTC_ROOT}/en-de \ --config-yaml config_st.yaml --train-subset train_st --valid-subset dev_st \ --save-dir ${ST_SAVE_DIR} --num-workers 8 \ --optimizer adam --lr 0.0001 --lr-scheduler inverse_sqrt --clip-norm 10.0 \ --criterion label_smoothed_cross_entropy \ --warmup-updates 4000 --max-update 100000 --max-tokens 40000 --seed 2 \ --load-pretrained-encoder-from ${ASR_SAVE_DIR}/checkpoint_best.pt \ --task speech_to_text \ --arch convtransformer_simul_trans_espnet \ --simul-type waitk_fixed_pre_decision \ --waitk-lagging 3 \ --fixed-pre-decision-ratio 7 \ --update-freq 8 ``` ### Monotonic multihead attention with fixed pre-decision module ``` fairseq-train ${MUSTC_ROOT}/en-de \ --config-yaml config_st.yaml --train-subset train_st --valid-subset dev_st \ --save-dir ${ST_SAVE_DIR} --num-workers 8 \ --optimizer adam --lr 0.0001 --lr-scheduler inverse_sqrt --clip-norm 10.0 \ --warmup-updates 4000 --max-update 100000 --max-tokens 40000 --seed 2 \ --load-pretrained-encoder-from ${ASR_SAVE_DIR}/${CHECKPOINT_FILENAME} \ --task speech_to_text \ --criterion latency_augmented_label_smoothed_cross_entropy \ --latency-weight-avg 0.1 \ --arch convtransformer_simul_trans_espnet \ --simul-type infinite_lookback_fixed_pre_decision \ --fixed-pre-decision-ratio 7 \ --update-freq 8 ``` ## Inference & Evaluation [SimulEval](https://github.com/facebookresearch/SimulEval) is used for evaluation. The following command is for evaluation. ``` git clone https://github.com/facebookresearch/SimulEval.git cd SimulEval pip install -e . simuleval \ --agent ${FAIRSEQ}/examples/speech_to_text/simultaneous_translation/agents/fairseq_simul_st_agent.py --source ${SRC_LIST_OF_AUDIO} --target ${TGT_FILE} --data-bin ${MUSTC_ROOT}/en-de \ --config config_st.yaml \ --model-path ${ST_SAVE_DIR}/${CHECKPOINT_FILENAME} \ --output ${OUTPUT} \ --scores ``` The source file `${SRC_LIST_OF_AUDIO}` is a list of paths of audio files. Assuming your audio files stored at `/home/user/data`, it should look like this ```bash /home/user/data/audio-1.wav /home/user/data/audio-2.wav ``` Each line of target file `${TGT_FILE}` is the translation for each audio file input. ```bash Translation_1 Translation_2 ``` The evaluation runs on the original MUSTC segmentation. The following command will generate the wav list and text file for a evaluation set `${SPLIT}` (chose from `dev`, `tst-COMMON` and `tst-HE`) in MUSTC to `${EVAL_DATA}`. ```bash python ${FAIRSEQ}/examples/speech_to_text/seg_mustc_data.py \ --data-root ${MUSTC_ROOT} --lang de \ --split ${SPLIT} --task st \ --output ${EVAL_DATA} ``` The `--data-bin` and `--config` should be the same in previous section if you prepare the data from the scratch. If only for evaluation, a prepared data directory can be found [here](https://dl.fbaipublicfiles.com/simultaneous_translation/must_c_v1.0_en_de_databin.tgz). It contains - `spm_unigram10000_st.model`: a sentencepiece model binary. - `spm_unigram10000_st.txt`: the dictionary file generated by the sentencepiece model. - `gcmvn.npz`: the binary for global cepstral mean and variance. - `config_st.yaml`: the config yaml file. It looks like this. You will need to set the absolute paths for `sentencepiece_model` and `stats_npz_path` if the data directory is downloaded. ```yaml bpe_tokenizer: bpe: sentencepiece sentencepiece_model: ABS_PATH_TO_SENTENCEPIECE_MODEL global_cmvn: stats_npz_path: ABS_PATH_TO_GCMVN_FILE input_channels: 1 input_feat_per_channel: 80 sampling_alpha: 1.0 specaugment: freq_mask_F: 27 freq_mask_N: 1 time_mask_N: 1 time_mask_T: 100 time_mask_p: 1.0 time_wrap_W: 0 transforms: '*': - global_cmvn _train: - global_cmvn - specaugment vocab_filename: spm_unigram10000_st.txt ``` Notice that once a `--data-bin` is set, the `--config` is the base name of the config yaml, not the full path. Set `--model-path` to the model checkpoint. A pretrained checkpoint can be downloaded from [here](https://dl.fbaipublicfiles.com/simultaneous_translation/convtransformer_wait5_pre7), which is a wait-5 model with a pre-decision of 280 ms. The result of this model on `tst-COMMON` is: ```bash { "Quality": { "BLEU": 13.94974229366959 }, "Latency": { "AL": 1751.8031870037803, "AL_CA": 2338.5911762796536, "AP": 0.7931395378788959, "AP_CA": 0.9405103863210942, "DAL": 1987.7811616943081, "DAL_CA": 2425.2751560926167 } } ``` If `--output ${OUTPUT}` option is used, the detailed log and scores will be stored under the `${OUTPUT}` directory. The quality is measured by detokenized BLEU. So make sure that the predicted words sent to the server are detokenized. The latency metrics are * Average Proportion * Average Lagging * Differentiable Average Lagging Again they will also be evaluated on detokenized text.