Spaces:
Runtime error
Runtime error
File size: 5,477 Bytes
ee21b96 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 |
# Copyright 2022 The OFA-Sys Team.
# All rights reserved.
# This source code is licensed under the Apache 2.0 license
# found in the LICENSE file in the root directory.
import json
import logging
import math
from dataclasses import dataclass, field
from typing import Optional
import torch
from fairseq import metrics
from fairseq.dataclass import ChoiceEnum
from fairseq.tasks import register_task
from tasks.ofa_task import OFATask, OFAConfig
from data.nlu_data.mrpc_dataset import MRPCDataset
from data.file_dataset import FileDataset
from utils.trie import Trie
logger = logging.getLogger(__name__)
@dataclass
class MRPCConfig(OFAConfig):
ans2label_dict: Optional[str] = field(
default='{"no": 0, "yes": 1}',
metadata={"help": 'answer to label dict'},
)
prompt_type: ChoiceEnum(["none", "src", "prev_output"]) = field(
default="none",
metadata={"help": "decoder prompt"},
)
@register_task("mrpc", dataclass=MRPCConfig)
class MRPCTask(OFATask):
def __init__(self, cfg: MRPCConfig, src_dict, tgt_dict):
super().__init__(cfg, src_dict, tgt_dict)
self.ans2label_dict = json.loads(self.cfg.ans2label_dict)
def load_dataset(self, split, epoch=1, combine=False, **kwargs):
paths = self.cfg.data.split(',')
assert len(paths) > 0
if split == 'train':
file_path = paths[(epoch - 1) % (len(paths) - 1)]
else:
file_path = paths[-1]
dataset = FileDataset(file_path, self.cfg.selected_cols)
self.datasets[split] = MRPCDataset(
split,
dataset,
self.bpe,
self.src_dict,
self.tgt_dict,
max_src_length=self.cfg.max_src_length,
max_tgt_length=self.cfg.max_tgt_length,
constraint_trie=self.constraint_trie,
prompt_type=self.cfg.prompt_type
)
def build_model(self, cfg):
model = super().build_model(cfg)
self.constraint_trie = Trie(self.tgt_dict.eos())
for i, answer in enumerate(self.ans2label_dict.keys()):
answer_item = self.tgt_dict.encode_line(
line=self.bpe.encode(' ' + answer),
add_if_not_exist=False,
append_eos=False
).long()
self.constraint_trie.insert([self.tgt_dict.bos()] + answer_item.tolist() + [self.tgt_dict.eos()])
return model
def build_generator(
self, models, args, seq_gen_cls=None, extra_gen_cls_kwargs=None, prefix_allowed_tokens_fn=None,
):
seq_generator = super().build_generator(models, args, seq_gen_cls, extra_gen_cls_kwargs, prefix_allowed_tokens_fn)
seq_generator.constraint_trie = self.constraint_trie
return seq_generator
def valid_step(self, sample, model, criterion):
loss, sample_size, logging_output = super().valid_step(sample, model, criterion)
model.eval()
with torch.no_grad():
net_output = model(**sample["net_input"])
net_output[0].masked_fill_(~sample["constraint_masks"], -math.inf)
last_token_ids = sample["net_input"]["prev_output_tokens"].ne(self.src_dict.pad()).sum(1, keepdim=True) - 1
logits = net_output[0].gather(1, last_token_ids.unsqueeze(2).expand(-1, -1, net_output[0].size(2)))
logits = logits.squeeze(1)
predicts = logits.argmax(1).tolist()
hyps = [self.bpe.decode(self.src_dict[predict]).strip() for predict in predicts]
scores = [ref_dict.get(hyp, 0) for ref_dict, hyp in zip(sample['ref_dict'], hyps)]
TP = sum([ref_dict.get(hyp, 0) if hyp == 'yes' else 0 for ref_dict, hyp in zip(sample['ref_dict'], hyps)])
FP = sum([1 - ref_dict.get(hyp, 0) if hyp == 'yes' else 0 for ref_dict, hyp in zip(sample['ref_dict'], hyps)])
FN = sum([1 - ref_dict.get(hyp, 0) if hyp == 'no' else 0 for ref_dict, hyp in zip(sample['ref_dict'], hyps)])
logging_output["_score_sum"] = sum(scores)
logging_output["_score_cnt"] = len(scores)
logging_output["_TP"] = TP
logging_output["_FP"] = FP
logging_output["_FN"] = FN
return loss, sample_size, logging_output
def reduce_metrics(self, logging_outputs, criterion):
super().reduce_metrics(logging_outputs, criterion)
def sum_logs(key):
import torch
result = sum(log.get(key, 0) for log in logging_outputs)
if torch.is_tensor(result):
result = result.cpu()
return result
def compute_acc(meters):
score = meters["_score_sum"].sum / meters["_score_cnt"].sum
score = score if isinstance(score, float) else score.item()
return round(score, 4)
def compute_f1(meters):
score = 2*meters["_TP"].sum / (2*meters["_TP"].sum + meters["_FP"].sum + meters["_FN"].sum)
score = score if isinstance(score, float) else score.item()
return round(score, 3)
if sum_logs("_score_cnt") > 0:
metrics.log_scalar("_score_sum", sum_logs("_score_sum"))
metrics.log_scalar("_score_cnt", sum_logs("_score_cnt"))
metrics.log_scalar("_TP", sum_logs("_TP"))
metrics.log_scalar("_FP", sum_logs("_FP"))
metrics.log_scalar("_FN", sum_logs("_FN"))
metrics.log_derived("acc", compute_acc)
metrics.log_derived("F1", compute_f1)
|