Spaces:
Runtime error
Runtime error
File size: 6,125 Bytes
ee21b96 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 |
# Copyright 2022 The OFA-Sys Team.
# All rights reserved.
# This source code is licensed under the Apache 2.0 license
# found in the LICENSE file in the root directory.
from dataclasses import dataclass, field
import json
import logging
from typing import Optional
from argparse import Namespace
import torch
from fairseq import metrics
from fairseq.tasks import register_task
from tasks.ofa_task import OFATask, OFAConfig
from data.mm_data.refcoco_dataset import RefcocoDataset
from data.file_dataset import FileDataset
logger = logging.getLogger(__name__)
@dataclass
class RefcocoConfig(OFAConfig):
eval_acc: bool = field(
default=False, metadata={"help": "evaluation with accuracy"}
)
eval_args: Optional[str] = field(
default='{}',
metadata={
"help": 'generation args, e.g., \'{"beam": 4, "lenpen": 0.6}\', as JSON string'
},
)
eval_print_samples: bool = field(
default=False, metadata={"help": "print sample generations during validation"}
)
max_image_size: int = field(
default=512, metadata={"help": "max image size for normalization"}
)
scst: bool = field(
default=False, metadata={"help": "Self-critical sequence training"}
)
scst_args: str = field(
default='{}',
metadata={
"help": 'generation args for Self-critical sequence training, as JSON string'
},
)
@register_task("refcoco", dataclass=RefcocoConfig)
class RefcocoTask(OFATask):
def __init__(self, cfg: RefcocoConfig, src_dict, tgt_dict):
super().__init__(cfg, src_dict, tgt_dict)
def load_dataset(self, split, epoch=1, combine=False, **kwargs):
paths = self.cfg.data.split(',')
assert len(paths) > 0
if split == 'train':
file_path = paths[(epoch - 1) % (len(paths) - 1)]
else:
file_path = paths[-1]
dataset = FileDataset(file_path, self.cfg.selected_cols)
self.datasets[split] = RefcocoDataset(
split,
dataset,
self.bpe,
self.src_dict,
self.tgt_dict,
max_src_length=self.cfg.max_src_length,
max_tgt_length=self.cfg.max_tgt_length,
patch_image_size=self.cfg.patch_image_size,
imagenet_default_mean_and_std=self.cfg.imagenet_default_mean_and_std,
num_bins=self.cfg.num_bins,
max_image_size=self.cfg.max_image_size
)
def build_model(self, cfg):
model = super().build_model(cfg)
if self.cfg.eval_acc:
gen_args = json.loads(self.cfg.eval_args)
self.sequence_generator = self.build_generator(
[model], Namespace(**gen_args)
)
if self.cfg.scst:
scst_args = json.loads(self.cfg.scst_args)
self.scst_generator = self.build_generator(
[model], Namespace(**scst_args)
)
return model
def _calculate_ap_score(self, hyps, refs, thresh=0.5):
interacts = torch.cat(
[torch.where(hyps[:, :2] < refs[:, :2], refs[:, :2], hyps[:, :2]),
torch.where(hyps[:, 2:] < refs[:, 2:], hyps[:, 2:], refs[:, 2:])],
dim=1
)
area_predictions = (hyps[:, 2] - hyps[:, 0]) * (hyps[:, 3] - hyps[:, 1])
area_targets = (refs[:, 2] - refs[:, 0]) * (refs[:, 3] - refs[:, 1])
interacts_w = interacts[:, 2] - interacts[:, 0]
interacts_h = interacts[:, 3] - interacts[:, 1]
area_interacts = interacts_w * interacts_h
ious = area_interacts / (area_predictions + area_targets - area_interacts + 1e-6)
return ((ious >= thresh) & (interacts_w > 0) & (interacts_h > 0)).float()
def valid_step(self, sample, model, criterion):
loss, sample_size, logging_output = criterion(model, sample)
model.eval()
if self.cfg.eval_acc:
hyps, refs = self._inference(self.sequence_generator, sample, model)
hyps = hyps / (self.cfg.num_bins - 1) * self.cfg.max_image_size
refs = refs / (self.cfg.num_bins - 1) * self.cfg.max_image_size
hyps[:, ::2] /= sample['w_resize_ratios'].unsqueeze(1)
hyps[:, 1::2] /= sample['h_resize_ratios'].unsqueeze(1)
refs[:, ::2] /= sample['w_resize_ratios'].unsqueeze(1)
refs[:, 1::2] /= sample['h_resize_ratios'].unsqueeze(1)
# scores = self._calculate_ap_score(hyps, refs)
scores = self._calculate_ap_score(hyps, sample['region_coords'].float())
logging_output["_score_sum"] = scores.sum().item()
logging_output["_score_cnt"] = scores.size(0)
return loss, sample_size, logging_output
def reduce_metrics(self, logging_outputs, criterion):
super().reduce_metrics(logging_outputs, criterion)
def sum_logs(key):
import torch
result = sum(log.get(key, 0) for log in logging_outputs)
if torch.is_tensor(result):
result = result.cpu()
return result
def compute_score(meters):
score = meters["_score_sum"].sum / meters["_score_cnt"].sum
score = score if isinstance(score, float) else score.item()
return round(score, 4)
if sum_logs("_score_cnt") > 0:
metrics.log_scalar("_score_sum", sum_logs("_score_sum"))
metrics.log_scalar("_score_cnt", sum_logs("_score_cnt"))
metrics.log_derived("score", compute_score)
def _inference(self, generator, sample, model):
gen_out = self.inference_step(generator, [model], sample)
hyps, refs = [], []
for i in range(len(gen_out)):
hyps.append(gen_out[i][0]["tokens"][:-1] - len(self.src_dict) + self.cfg.num_bins)
refs.append(sample["target"][i][:-1] - len(self.src_dict) + self.cfg.num_bins)
if self.cfg.eval_print_samples:
logger.info("example hypothesis: ", hyps[0])
logger.info("example reference: ", refs[0])
return torch.stack(hyps, dim=0), torch.stack(refs, dim=0)
|