Spaces:
Runtime error
Runtime error
File size: 7,993 Bytes
ee21b96 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 |
# Copyright (c) Facebook, Inc. and its affiliates.
#
# This source code is licensed under the MIT license found in the
# LICENSE file in the root directory of this source tree.
import argparse
import os
import os.path as op
from collections import namedtuple
from multiprocessing import cpu_count
from typing import List, Optional
import sentencepiece as sp
from fairseq.data.encoders.byte_bpe import ByteBPE
from fairseq.data.encoders.byte_utils import byte_encode
from fairseq.data.encoders.bytes import Bytes
from fairseq.data.encoders.characters import Characters
from fairseq.data.encoders.moses_tokenizer import MosesTokenizer
from fairseq.data.encoders.sentencepiece_bpe import SentencepieceBPE
SPLITS = ["train", "valid", "test"]
def _convert_xml(in_path: str, out_path: str):
with open(in_path) as f, open(out_path, "w") as f_o:
for s in f:
ss = s.strip()
if not ss.startswith("<seg"):
continue
ss = ss.replace("</seg>", "").split('">')
assert len(ss) == 2
f_o.write(ss[1].strip() + "\n")
def _convert_train(in_path: str, out_path: str):
with open(in_path) as f, open(out_path, "w") as f_o:
for s in f:
ss = s.strip()
if ss.startswith("<"):
continue
f_o.write(ss.strip() + "\n")
def _get_bytes(in_path: str, out_path: str):
with open(in_path) as f, open(out_path, "w") as f_o:
for s in f:
f_o.write(Bytes.encode(s.strip()) + "\n")
def _get_chars(in_path: str, out_path: str):
with open(in_path) as f, open(out_path, "w") as f_o:
for s in f:
f_o.write(Characters.encode(s.strip()) + "\n")
def pretokenize(in_path: str, out_path: str, src: str, tgt: str):
Args = namedtuple(
"Args",
[
"moses_source_lang",
"moses_target_lang",
"moses_no_dash_splits",
"moses_no_escape",
],
)
args = Args(
moses_source_lang=src,
moses_target_lang=tgt,
moses_no_dash_splits=False,
moses_no_escape=False,
)
pretokenizer = MosesTokenizer(args)
with open(in_path) as f, open(out_path, "w") as f_o:
for s in f:
f_o.write(pretokenizer.encode(s.strip()) + "\n")
def _convert_to_bchar(in_path_prefix: str, src: str, tgt: str, out_path: str):
with open(out_path, "w") as f_o:
for lang in [src, tgt]:
with open(f"{in_path_prefix}.{lang}") as f:
for s in f:
f_o.write(byte_encode(s.strip()) + "\n")
def _get_bpe(in_path: str, model_prefix: str, vocab_size: int):
arguments = [
f"--input={in_path}",
f"--model_prefix={model_prefix}",
f"--model_type=bpe",
f"--vocab_size={vocab_size}",
"--character_coverage=1.0",
"--normalization_rule_name=identity",
f"--num_threads={cpu_count()}",
]
sp.SentencePieceTrainer.Train(" ".join(arguments))
def _apply_bbpe(model_path: str, in_path: str, out_path: str):
Args = namedtuple("Args", ["sentencepiece_model_path"])
args = Args(sentencepiece_model_path=model_path)
tokenizer = ByteBPE(args)
with open(in_path) as f, open(out_path, "w") as f_o:
for s in f:
f_o.write(tokenizer.encode(s.strip()) + "\n")
def _apply_bpe(model_path: str, in_path: str, out_path: str):
Args = namedtuple("Args", ["sentencepiece_model"])
args = Args(sentencepiece_model=model_path)
tokenizer = SentencepieceBPE(args)
with open(in_path) as f, open(out_path, "w") as f_o:
for s in f:
f_o.write(tokenizer.encode(s.strip()) + "\n")
def _concat_files(in_paths: List[str], out_path: str):
with open(out_path, "w") as f_o:
for p in in_paths:
with open(p) as f:
for r in f:
f_o.write(r)
def preprocess_iwslt17(
root: str,
src: str,
tgt: str,
bpe_size: Optional[int],
need_chars: bool,
bbpe_size: Optional[int],
need_bytes: bool,
):
# extract bitext
in_root = op.join(root, f"{src}-{tgt}")
for lang in [src, tgt]:
_convert_train(
op.join(in_root, f"train.tags.{src}-{tgt}.{lang}"),
op.join(root, f"train.{lang}"),
)
_convert_xml(
op.join(in_root, f"IWSLT17.TED.dev2010.{src}-{tgt}.{lang}.xml"),
op.join(root, f"valid.{lang}"),
)
_convert_xml(
op.join(in_root, f"IWSLT17.TED.tst2015.{src}-{tgt}.{lang}.xml"),
op.join(root, f"test.{lang}"),
)
# pre-tokenize
for lang in [src, tgt]:
for split in SPLITS:
pretokenize(
op.join(root, f"{split}.{lang}"),
op.join(root, f"{split}.moses.{lang}"),
src,
tgt,
)
# tokenize with BPE vocabulary
if bpe_size is not None:
# learn vocabulary
concated_train_path = op.join(root, "train.all")
_concat_files(
[op.join(root, "train.moses.fr"), op.join(root, "train.moses.en")],
concated_train_path,
)
bpe_model_prefix = op.join(root, f"spm_bpe{bpe_size}")
_get_bpe(concated_train_path, bpe_model_prefix, bpe_size)
os.remove(concated_train_path)
# apply
for lang in [src, tgt]:
for split in SPLITS:
_apply_bpe(
bpe_model_prefix + ".model",
op.join(root, f"{split}.moses.{lang}"),
op.join(root, f"{split}.moses.bpe{bpe_size}.{lang}"),
)
# tokenize with bytes vocabulary
if need_bytes:
for lang in [src, tgt]:
for split in SPLITS:
_get_bytes(
op.join(root, f"{split}.moses.{lang}"),
op.join(root, f"{split}.moses.bytes.{lang}"),
)
# tokenize with characters vocabulary
if need_chars:
for lang in [src, tgt]:
for split in SPLITS:
_get_chars(
op.join(root, f"{split}.moses.{lang}"),
op.join(root, f"{split}.moses.chars.{lang}"),
)
# tokenize with byte-level BPE vocabulary
if bbpe_size is not None:
# learn vocabulary
bchar_path = op.join(root, "train.bchar")
_convert_to_bchar(op.join(root, "train.moses"), src, tgt, bchar_path)
bbpe_model_prefix = op.join(root, f"spm_bbpe{bbpe_size}")
_get_bpe(bchar_path, bbpe_model_prefix, bbpe_size)
os.remove(bchar_path)
# apply
for lang in [src, tgt]:
for split in SPLITS:
_apply_bbpe(
bbpe_model_prefix + ".model",
op.join(root, f"{split}.moses.{lang}"),
op.join(root, f"{split}.moses.bbpe{bbpe_size}.{lang}"),
)
def main():
parser = argparse.ArgumentParser()
parser.add_argument("--root", type=str, default="data")
parser.add_argument(
"--bpe-vocab",
default=None,
type=int,
help="Generate tokenized bitext with BPE of size K."
"Default to None (disabled).",
)
parser.add_argument(
"--bbpe-vocab",
default=None,
type=int,
help="Generate tokenized bitext with BBPE of size K."
"Default to None (disabled).",
)
parser.add_argument(
"--byte-vocab",
action="store_true",
help="Generate tokenized bitext with bytes vocabulary",
)
parser.add_argument(
"--char-vocab",
action="store_true",
help="Generate tokenized bitext with chars vocabulary",
)
args = parser.parse_args()
preprocess_iwslt17(
args.root,
"fr",
"en",
args.bpe_vocab,
args.char_vocab,
args.bbpe_vocab,
args.byte_vocab,
)
if __name__ == "__main__":
main()
|