File size: 6,383 Bytes
ee21b96
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
#!/usr/bin/env

# Guide:
# This script supports distributed training on multi-gpu workers (as well as single-worker training). 
# Please set the options below according to the comments. 
# For multi-gpu workers training, these options should be manually set for each worker. 
# After setting the options, please run the script on each worker.
# To use the shuffled data (if exists), please uncomment the Line 24.

# Number of GPUs per GPU worker
GPUS_PER_NODE=8 
# Number of GPU workers, for single-worker training, please set to 1
WORKER_CNT=4 
# The ip address of the rank-0 worker, for single-worker training, please set to localhost
export MASTER_ADDR=XX.XX.XX.XX
# The port for communication
export MASTER_PORT=8214
# The rank of this worker, should be in {0, ..., WORKER_CNT-1}, for single-worker training, please set to 0
export RANK=0 

data_dir=../../dataset/vqa_data
data=${data_dir}/vqa_train.tsv,${data_dir}/vqa_val.tsv
# Note: If you have shuffled the data in advance, please uncomment the line below.
# data=${data_dir}/vqa_train_1.tsv,${data_dir}/vqa_train_2.tsv,${data_dir}/vqa_train_3.tsv,${data_dir}/vqa_train_4.tsv,${data_dir}/vqa_train_5.tsv,${data_dir}/vqa_train_6.tsv,${data_dir}/vqa_train_7.tsv,${data_dir}/vqa_train_8.tsv,${data_dir}/vqa_train_9.tsv,${data_dir}/vqa_train_10.tsv,${data_dir}/vqa_val.tsv
ans2label_file=../../dataset/vqa_data/trainval_ans2label.pkl
restore_file=../../checkpoints/ofa_large.pt
selected_cols=0,5,2,3,4

log_dir=./vqa_logs
save_dir=./vqa_checkpoints
mkdir -p $log_dir $save_dir

bpe_dir=../../utils/BPE
user_dir=../../ofa_module

task=vqa_gen
arch=ofa_large
criterion=adjust_label_smoothed_cross_entropy
label_smoothing=0.1
batch_size=4
update_freq=4
resnet_drop_path_rate=0.0
encoder_drop_path_rate=0.2
decoder_drop_path_rate=0.2
dropout=0.1
attention_dropout=0.0
max_src_length=80
max_object_length=30
max_tgt_length=30
num_bins=1000

uses_ema="--uses-ema"
store_ema="--store-ema"
ema_fp32="--ema-fp32"
ema_decay=0.9999
ema_start_update=0

# Specify the inference type in validation after each fine-tuning epoch
# As mentioned in the readme, you can choose from allcand or beamsearch evaluation, default to allcand
val_inference_type=allcand

# Specify whether to activate unconstrained VQA finetuning, which does not use a pre-defined candidate answer set
# If --unconstrained-training is acitvated, --ans2label-file will **not be used even if it is specified**
# Meanwhile, --val-inference-type must be set to **beamsearch**
# By default, we follow the constrained finetuning as we mentioned in OFA paper, the candidate answer set shall be specified by --ans2label-file
# For more details about this option, please refer to issue #123 and PR #124
unconstrained_training_flag=""
# unconstrained_training_flag="--unconstrained-training"

for total_num_updates in {40000,}; do
  echo "total_num_updates "${total_num_updates}
  for warmup_updates in {1000,}; do
    echo "warmup_updates "${warmup_updates}  
    for lr in {5e-5,}; do
      echo "lr "${lr}
      for patch_image_size in {480,}; do
        echo "patch_image_size "${patch_image_size}

        log_file=${log_dir}/${total_num_updates}"_"${warmup_updates}"_"${lr}"_"${patch_image_size}"_rank"${RANK}".log"
        save_path=${save_dir}/${total_num_updates}"_"${warmup_updates}"_"${lr}"_"${patch_image_size}
        mkdir -p $save_path

        python3 -m torch.distributed.launch --nproc_per_node=${GPUS_PER_NODE} --nnodes=${WORKER_CNT} --node_rank=${RANK} --master_addr=${MASTER_ADDR} --master_port=${MASTER_PORT} ../../train.py \
            ${data} \
            --selected-cols=${selected_cols} \
            --bpe-dir=${bpe_dir} \
            --user-dir=${user_dir} \
            --restore-file=${restore_file} \
            --reset-optimizer --reset-dataloader --reset-meters \
            --save-dir=${save_path} \
            --task=${task} \
            --arch=${arch} \
            --criterion=${criterion} \
            --label-smoothing=${label_smoothing} \
            --batch-size=${batch_size} \
            --update-freq=${update_freq} \
            --encoder-normalize-before \
            --decoder-normalize-before \
            --share-decoder-input-output-embed \
            --share-all-embeddings \
            --layernorm-embedding \
            --patch-layernorm-embedding \
            --code-layernorm-embedding \
            --resnet-drop-path-rate=${resnet_drop_path_rate} \
            --encoder-drop-path-rate=${encoder_drop_path_rate} \
            --decoder-drop-path-rate=${decoder_drop_path_rate} \
            --dropout=${dropout} \
            --attention-dropout=${attention_dropout} \
            --weight-decay=0.01 \
            --optimizer=adam \
            --adam-betas="(0.9,0.999)" \
            --adam-eps=1e-08 \
            --clip-norm=1.0 \
            --lr-scheduler=polynomial_decay \
            --lr=${lr} \
            --total-num-update=${total_num_updates} \
            --warmup-updates=${warmup_updates} \
            --log-format=simple \
            --log-interval=10 \
            --fixed-validation-seed=7 \
            --keep-last-epochs=15 \
            --save-interval=1 --validate-interval=1 \
            --max-update=${total_num_updates} \
            --best-checkpoint-metric=vqa_score --maximize-best-checkpoint-metric \
            --max-src-length=${max_src_length} \
            --max-object-length=${max_object_length} \
            --max-tgt-length=${max_tgt_length} \
            --find-unused-parameters \
            --freeze-encoder-embedding \
            --freeze-decoder-embedding \
            ${unconstrained_training_flag} \
            --ans2label-file=${ans2label_file} \
            --valid-batch-size=20 \
            --add-type-embedding \
            --scale-attn \
            --scale-fc \
            --scale-heads \
            --disable-entangle \
            --num-bins=${num_bins} \
            --patch-image-size=${patch_image_size} \
            --prompt-type=prev_output \
            --fp16 \
            --fp16-scale-window=512 \
            --add-object \
            ${uses_ema} \
            ${store_ema} \
            ${ema_fp32} \
            --ema-decay=${ema_decay} \
            --ema-start-update=${ema_start_update} \
            --val-inference-type=${val_inference_type} \
            --num-workers=0 > ${log_file} 2>&1
      done
    done
  done
done