Spaces:
Runtime error
Runtime error
File size: 7,370 Bytes
ee21b96 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 |
from functools import partial
import torch
from torch import Tensor
import math
import torch.nn.functional as F
from . import register_monotonic_attention
from .monotonic_multihead_attention import (
MonotonicAttention,
MonotonicInfiniteLookbackAttention,
WaitKAttention
)
from typing import Dict, Optional
def fixed_pooling_monotonic_attention(monotonic_attention):
def create_model(monotonic_attention, klass):
class FixedStrideMonotonicAttention(monotonic_attention):
def __init__(self, args):
self.waitk_lagging = 0
self.num_heads = 0
self.noise_mean = 0.0
self.noise_var = 0.0
super().__init__(args)
self.pre_decision_type = args.fixed_pre_decision_type
self.pre_decision_ratio = args.fixed_pre_decision_ratio
self.pre_decision_pad_threshold = args.fixed_pre_decision_pad_threshold
assert self.pre_decision_ratio > 1
if args.fixed_pre_decision_type == "average":
self.pooling_layer = torch.nn.AvgPool1d(
kernel_size=self.pre_decision_ratio,
stride=self.pre_decision_ratio,
ceil_mode=True,
)
elif args.fixed_pre_decision_type == "last":
def last(key):
if key.size(2) < self.pre_decision_ratio:
return key
else:
k = key[
:,
:,
self.pre_decision_ratio - 1:: self.pre_decision_ratio,
].contiguous()
if key.size(-1) % self.pre_decision_ratio != 0:
k = torch.cat([k, key[:, :, -1:]], dim=-1).contiguous()
return k
self.pooling_layer = last
else:
raise NotImplementedError
@staticmethod
def add_args(parser):
super(
FixedStrideMonotonicAttention, FixedStrideMonotonicAttention
).add_args(parser)
parser.add_argument(
"--fixed-pre-decision-ratio",
type=int,
required=True,
help=(
"Ratio for the fixed pre-decision,"
"indicating how many encoder steps will start"
"simultaneous decision making process."
),
)
parser.add_argument(
"--fixed-pre-decision-type",
default="average",
choices=["average", "last"],
help="Pooling type",
)
parser.add_argument(
"--fixed-pre-decision-pad-threshold",
type=float,
default=0.3,
help="If a part of the sequence has pad"
",the threshold the pooled part is a pad.",
)
def insert_zeros(self, x):
bsz_num_heads, tgt_len, src_len = x.size()
stride = self.pre_decision_ratio
weight = F.pad(torch.ones(1, 1, 1).to(x), (stride - 1, 0))
x_upsample = F.conv_transpose1d(
x.view(-1, src_len).unsqueeze(1),
weight,
stride=stride,
padding=0,
)
return x_upsample.squeeze(1).view(bsz_num_heads, tgt_len, -1)
def p_choose(
self,
query: Optional[Tensor],
key: Optional[Tensor],
key_padding_mask: Optional[Tensor] = None,
incremental_state: Optional[Dict[str, Dict[str, Optional[Tensor]]]] = None,
):
assert key is not None
assert query is not None
src_len = key.size(0)
tgt_len = query.size(0)
batch_size = query.size(1)
key_pool = self.pooling_layer(key.transpose(0, 2)).transpose(0, 2)
if key_padding_mask is not None:
key_padding_mask_pool = (
self.pooling_layer(key_padding_mask.unsqueeze(0).float())
.squeeze(0)
.gt(self.pre_decision_pad_threshold)
)
# Make sure at least one element is not pad
key_padding_mask_pool[:, 0] = 0
else:
key_padding_mask_pool = None
if incremental_state is not None:
# The floor instead of ceil is used for inference
# But make sure the length key_pool at least 1
if (
max(1, math.floor(key.size(0) / self.pre_decision_ratio))
) < key_pool.size(0):
key_pool = key_pool[:-1]
if key_padding_mask_pool is not None:
key_padding_mask_pool = key_padding_mask_pool[:-1]
p_choose_pooled = self.p_choose_from_qk(
query,
key_pool,
key_padding_mask_pool,
incremental_state=incremental_state,
)
# Upsample, interpolate zeros
p_choose = self.insert_zeros(p_choose_pooled)
if p_choose.size(-1) < src_len:
# Append zeros if the upsampled p_choose is shorter than src_len
p_choose = torch.cat(
[
p_choose,
torch.zeros(
p_choose.size(0),
tgt_len,
src_len - p_choose.size(-1)
).to(p_choose)
],
dim=2
)
else:
# can be larger than src_len because we used ceil before
p_choose = p_choose[:, :, :src_len]
p_choose[:, :, -1] = p_choose_pooled[:, :, -1]
assert list(p_choose.size()) == [
batch_size * self.num_heads,
tgt_len,
src_len,
]
return p_choose
FixedStrideMonotonicAttention.__name__ = klass.__name__
return FixedStrideMonotonicAttention
return partial(create_model, monotonic_attention)
@register_monotonic_attention("waitk_fixed_pre_decision")
@fixed_pooling_monotonic_attention(WaitKAttention)
class WaitKAttentionFixedStride:
pass
@register_monotonic_attention("hard_aligned_fixed_pre_decision")
@fixed_pooling_monotonic_attention(MonotonicAttention)
class MonotonicAttentionFixedStride:
pass
@register_monotonic_attention("infinite_lookback_fixed_pre_decision")
@fixed_pooling_monotonic_attention(MonotonicInfiniteLookbackAttention)
class MonotonicInfiniteLookbackAttentionFixedStride:
pass
|