Spaces:
Runtime error
Runtime error
File size: 4,170 Bytes
ee21b96 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 |
# Copyright (c) Facebook, Inc. and its affiliates.
#
# This source code is licensed under the MIT license found in the
# LICENSE file in the root directory of this source tree.
import logging
import os
import contextlib
import numpy as np
import torch
from fairseq.data import FairseqDataset, data_utils
logger = logging.getLogger(__name__)
class ExtractedFeaturesDataset(FairseqDataset):
def __init__(
self,
path,
split,
min_length=3,
max_length=None,
labels=None,
label_dict=None,
shuffle=True,
sort_by_length=True,
):
super().__init__()
self.min_length = min_length
self.max_length = max_length
self.shuffle = shuffle
self.sort_by_length = sort_by_length
self.label_dict = label_dict
if labels is not None:
assert label_dict is not None
self.sizes = []
self.offsets = []
self.labels = []
path = os.path.join(path, split)
data_path = path
self.data = np.load(data_path + ".npy", mmap_mode="r")
offset = 0
skipped = 0
if not os.path.exists(path + f".{labels}"):
labels = None
with open(data_path + ".lengths", "r") as len_f, open(
path + f".{labels}", "r"
) if labels is not None else contextlib.ExitStack() as lbl_f:
for line in len_f:
length = int(line.rstrip())
lbl = None if labels is None else next(lbl_f).rstrip().split()
if length >= min_length and (
max_length is None or length <= max_length
):
self.sizes.append(length)
self.offsets.append(offset)
if lbl is not None:
self.labels.append(lbl)
offset += length
self.sizes = np.asarray(self.sizes)
self.offsets = np.asarray(self.offsets)
logger.info(f"loaded {len(self.offsets)}, skipped {skipped} samples")
def __getitem__(self, index):
offset = self.offsets[index]
end = self.sizes[index] + offset
feats = torch.from_numpy(self.data[offset:end].copy()).float()
res = {"id": index, "features": feats}
if len(self.labels) > 0:
res["target"] = self.label_dict.encode_line(
self.labels[index],
line_tokenizer=lambda x: x,
append_eos=False,
)
return res
def __len__(self):
return len(self.sizes)
def collater(self, samples):
if len(samples) == 0:
return {}
features = [s["features"] for s in samples]
sizes = [len(s) for s in features]
target_size = max(sizes)
collated_features = features[0].new_zeros(
len(features), target_size, features[0].size(-1)
)
padding_mask = torch.BoolTensor(collated_features.shape[:-1]).fill_(False)
for i, (f, size) in enumerate(zip(features, sizes)):
collated_features[i, :size] = f
padding_mask[i, size:] = True
res = {
"id": torch.LongTensor([s["id"] for s in samples]),
"net_input": {"features": collated_features, "padding_mask": padding_mask},
}
if len(self.labels) > 0:
target = data_utils.collate_tokens(
[s["target"] for s in samples],
pad_idx=self.label_dict.pad(),
left_pad=False,
)
res["target"] = target
return res
def num_tokens(self, index):
return self.size(index)
def size(self, index):
return self.sizes[index]
def ordered_indices(self):
"""Return an ordered list of indices. Batches will be constructed based
on this order."""
if self.shuffle:
order = [np.random.permutation(len(self))]
else:
order = [np.arange(len(self))]
if self.sort_by_length:
order.append(self.sizes)
return np.lexsort(order)[::-1]
else:
return order[0]
|