Spaces:
Runtime error
Runtime error
File size: 17,491 Bytes
ee21b96 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 |
# Copyright (c) Facebook, Inc. and its affiliates.
#
# This source code is licensed under the MIT license found in the
# LICENSE file in the root directory of this source tree.
from dataclasses import dataclass, field
import itertools
import logging
import os
import numpy as np
import torch
from fairseq import metrics
from fairseq.data import (
ConcatDataset,
ConcatSentencesDataset,
data_utils,
Dictionary,
IdDataset,
indexed_dataset,
NestedDictionaryDataset,
NumSamplesDataset,
NumelDataset,
PrependTokenDataset,
RawLabelDataset,
RightPadDataset,
SortDataset,
TruncateDataset,
TokenBlockDataset,
)
from fairseq.dataclass import ChoiceEnum, FairseqDataclass
from fairseq.tasks import FairseqTask, register_task
from omegaconf import II, MISSING
EVAL_BLEU_ORDER = 4
TARGET_METRIC_CHOICES = ChoiceEnum(["bleu", "ter"])
logger = logging.getLogger(__name__)
@dataclass
class DiscriminativeRerankingNMTConfig(FairseqDataclass):
data: str = field(default=MISSING, metadata={"help": "path to data directory"})
num_data_splits: int = field(
default=1, metadata={"help": "total number of data splits"}
)
no_shuffle: bool = field(
default=False, metadata={"help": "do not shuffle training data"}
)
max_positions: int = field(
default=512, metadata={"help": "number of positional embeddings to learn"}
)
include_src: bool = field(
default=False, metadata={"help": "include source sentence"}
)
mt_beam: int = field(default=50, metadata={"help": "beam size of input hypotheses"})
eval_target_metric: bool = field(
default=False,
metadata={"help": "evaluation with the target metric during validation"},
)
target_metric: TARGET_METRIC_CHOICES = field(
default="bleu", metadata={"help": "name of the target metric to optimize for"}
)
train_subset: str = field(
default=II("dataset.train_subset"),
metadata={"help": "data subset to use for training (e.g. train, valid, test)"},
)
seed: int = field(
default=II("common.seed"),
metadata={"help": "pseudo random number generator seed"},
)
class RerankerScorer(object):
"""Scores the target for a given (source (optional), target) input."""
def __init__(self, args, mt_beam):
self.mt_beam = mt_beam
@torch.no_grad()
def generate(self, models, sample, **kwargs):
"""Score a batch of translations."""
net_input = sample["net_input"]
assert len(models) == 1, "does not support model ensemble"
model = models[0]
bs = net_input["src_tokens"].shape[0]
assert (
model.joint_classification == "none" or bs % self.mt_beam == 0
), f"invalid batch size ({bs}) for joint classification with beam size ({self.mt_beam})"
model.eval()
logits = model(**net_input)
batch_out = model.sentence_forward(logits, net_input["src_tokens"])
if model.joint_classification == "sent":
batch_out = model.joint_forward(
batch_out.view(self.mt_beam, bs // self.mt_beam, -1)
)
scores = model.classification_forward(
batch_out.view(bs, 1, -1)
) # input: B x T x C
return scores
@register_task(
"discriminative_reranking_nmt", dataclass=DiscriminativeRerankingNMTConfig
)
class DiscriminativeRerankingNMTTask(FairseqTask):
"""
Translation rerank task.
The input can be either (src, tgt) sentence pairs or tgt sentence only.
"""
cfg: DiscriminativeRerankingNMTConfig
def __init__(self, cfg: DiscriminativeRerankingNMTConfig, data_dictionary=None):
super().__init__(cfg)
self.dictionary = data_dictionary
self._max_positions = cfg.max_positions
# args.tokens_per_sample = self._max_positions
# self.num_classes = 1 # for model
@classmethod
def load_dictionary(cls, cfg, filename):
"""Load the dictionary from the filename"""
dictionary = Dictionary.load(filename)
dictionary.add_symbol("<mask>") # for loading pretrained XLMR model
return dictionary
@classmethod
def setup_task(cls, cfg: DiscriminativeRerankingNMTConfig, **kwargs):
# load data dictionary (assume joint dictionary)
data_path = cfg.data
data_dict = cls.load_dictionary(
cfg, os.path.join(data_path, "input_src/dict.txt")
)
logger.info("[input] src dictionary: {} types".format(len(data_dict)))
return DiscriminativeRerankingNMTTask(cfg, data_dict)
def load_dataset(self, split, epoch=0, combine=False, **kwargs):
"""Load a given dataset split (e.g., train, valid, test)."""
if self.cfg.data.endswith("1"):
data_shard = (epoch - 1) % self.cfg.num_data_splits + 1
data_path = self.cfg.data[:-1] + str(data_shard)
else:
data_path = self.cfg.data
def get_path(type, data_split):
return os.path.join(data_path, str(type), data_split)
def make_dataset(type, dictionary, data_split, combine):
split_path = get_path(type, data_split)
dataset = data_utils.load_indexed_dataset(
split_path, dictionary, combine=combine,
)
return dataset
def load_split(data_split, metric):
input_src = None
if self.cfg.include_src:
input_src = make_dataset(
"input_src", self.dictionary, data_split, combine=False
)
assert input_src is not None, "could not find dataset: {}".format(
get_path("input_src", data_split)
)
input_tgt = make_dataset(
"input_tgt", self.dictionary, data_split, combine=False
)
assert input_tgt is not None, "could not find dataset: {}".format(
get_path("input_tgt", data_split)
)
label_path = f"{get_path(metric, data_split)}.{metric}"
assert os.path.exists(label_path), f"could not find dataset: {label_path}"
np_labels = np.loadtxt(label_path)
if self.cfg.target_metric == "ter":
np_labels = -np_labels
label = RawLabelDataset(np_labels)
return input_src, input_tgt, label
src_datasets = []
tgt_datasets = []
label_datasets = []
if split == self.cfg.train_subset:
for k in itertools.count():
split_k = "train" + (str(k) if k > 0 else "")
prefix = os.path.join(data_path, "input_tgt", split_k)
if not indexed_dataset.dataset_exists(prefix, impl=None):
if k > 0:
break
else:
raise FileNotFoundError(f"Dataset not found: {prefix}")
input_src, input_tgt, label = load_split(
split_k, self.cfg.target_metric
)
src_datasets.append(input_src)
tgt_datasets.append(input_tgt)
label_datasets.append(label)
else:
input_src, input_tgt, label = load_split(split, self.cfg.target_metric)
src_datasets.append(input_src)
tgt_datasets.append(input_tgt)
label_datasets.append(label)
if len(tgt_datasets) == 1:
input_tgt, label = tgt_datasets[0], label_datasets[0]
if self.cfg.include_src:
input_src = src_datasets[0]
else:
input_tgt = ConcatDataset(tgt_datasets)
label = ConcatDataset(label_datasets)
if self.cfg.include_src:
input_src = ConcatDataset(src_datasets)
input_tgt = TruncateDataset(input_tgt, self.cfg.max_positions)
if self.cfg.include_src:
input_src = PrependTokenDataset(input_src, self.dictionary.bos())
input_src = TruncateDataset(input_src, self.cfg.max_positions)
src_lengths = NumelDataset(input_src, reduce=False)
src_tokens = ConcatSentencesDataset(input_src, input_tgt)
else:
src_tokens = PrependTokenDataset(input_tgt, self.dictionary.bos())
src_lengths = NumelDataset(src_tokens, reduce=False)
dataset = {
"id": IdDataset(),
"net_input": {
"src_tokens": RightPadDataset(
src_tokens, pad_idx=self.source_dictionary.pad(),
),
"src_lengths": src_lengths,
},
"nsentences": NumSamplesDataset(),
"ntokens": NumelDataset(src_tokens, reduce=True),
"target": label,
}
dataset = NestedDictionaryDataset(dataset, sizes=[src_tokens.sizes],)
assert len(dataset) % self.cfg.mt_beam == 0, (
"dataset size (%d) is not a multiple of beam size (%d)"
% (len(dataset), self.cfg.mt_beam)
)
# no need to shuffle valid/test sets
if not self.cfg.no_shuffle and split == self.cfg.train_subset:
# need to keep all hypothese together
start_idx = np.arange(0, len(dataset), self.cfg.mt_beam)
with data_utils.numpy_seed(self.cfg.seed + epoch):
np.random.shuffle(start_idx)
idx = np.arange(0, self.cfg.mt_beam)
shuffle = np.tile(idx, (len(start_idx), 1)).reshape(-1) + np.tile(
start_idx, (self.cfg.mt_beam, 1)
).transpose().reshape(-1)
dataset = SortDataset(dataset, sort_order=[shuffle],)
logger.info(f"Loaded {split} with #samples: {len(dataset)}")
self.datasets[split] = dataset
return self.datasets[split]
def build_dataset_for_inference(self, src_tokens, src_lengths, **kwargs):
assert not self.cfg.include_src or len(src_tokens[0]) == 2
input_src = None
if self.cfg.include_src:
input_src = TokenBlockDataset(
[t[0] for t in src_tokens],
[l[0] for l in src_lengths],
block_size=None, # ignored for "eos" break mode
pad=self.source_dictionary.pad(),
eos=self.source_dictionary.eos(),
break_mode="eos",
)
input_src = PrependTokenDataset(input_src, self.dictionary.bos())
input_src = TruncateDataset(input_src, self.cfg.max_positions)
input_tgt = TokenBlockDataset(
[t[-1] for t in src_tokens],
[l[-1] for l in src_lengths],
block_size=None, # ignored for "eos" break mode
pad=self.source_dictionary.pad(),
eos=self.source_dictionary.eos(),
break_mode="eos",
)
input_tgt = TruncateDataset(input_tgt, self.cfg.max_positions)
if self.cfg.include_src:
src_tokens = ConcatSentencesDataset(input_src, input_tgt)
src_lengths = NumelDataset(input_src, reduce=False)
else:
input_tgt = PrependTokenDataset(input_tgt, self.dictionary.bos())
src_tokens = input_tgt
src_lengths = NumelDataset(src_tokens, reduce=False)
dataset = {
"id": IdDataset(),
"net_input": {
"src_tokens": RightPadDataset(
src_tokens, pad_idx=self.source_dictionary.pad(),
),
"src_lengths": src_lengths,
},
"nsentences": NumSamplesDataset(),
"ntokens": NumelDataset(src_tokens, reduce=True),
}
return NestedDictionaryDataset(dataset, sizes=[src_tokens.sizes],)
def build_model(self, cfg: FairseqDataclass):
return super().build_model(cfg)
def build_generator(self, args):
return RerankerScorer(args, mt_beam=self.cfg.mt_beam)
def max_positions(self):
return self._max_positions
@property
def source_dictionary(self):
return self.dictionary
@property
def target_dictionary(self):
return self.dictionary
def create_dummy_batch(self, device):
dummy_target = (
torch.zeros(self.cfg.mt_beam, EVAL_BLEU_ORDER * 2 + 3).long().to(device)
if not self.cfg.eval_ter
else torch.zeros(self.cfg.mt_beam, 3).long().to(device)
)
return {
"id": torch.zeros(self.cfg.mt_beam, 1).long().to(device),
"net_input": {
"src_tokens": torch.zeros(self.cfg.mt_beam, 4).long().to(device),
"src_lengths": torch.ones(self.cfg.mt_beam, 1).long().to(device),
},
"nsentences": 0,
"ntokens": 0,
"target": dummy_target,
}
def train_step(
self, sample, model, criterion, optimizer, update_num, ignore_grad=False
):
if ignore_grad and sample is None:
sample = self.create_dummy_batch(model.device)
return super().train_step(
sample, model, criterion, optimizer, update_num, ignore_grad
)
def valid_step(self, sample, model, criterion):
if sample is None:
sample = self.create_dummy_batch(model.device)
loss, sample_size, logging_output = super().valid_step(sample, model, criterion)
if not self.cfg.eval_target_metric:
return loss, sample_size, logging_output
scores = logging_output["scores"]
if self.cfg.target_metric == "bleu":
assert sample["target"].shape[1] == EVAL_BLEU_ORDER * 2 + 3, (
"target does not contain enough information ("
+ str(sample["target"].shape[1])
+ "for evaluating BLEU"
)
max_id = torch.argmax(scores, dim=1)
select_id = max_id + torch.arange(
0, sample_size * self.cfg.mt_beam, self.cfg.mt_beam
).to(max_id.device)
bleu_data = sample["target"][select_id, 1:].sum(0).data
logging_output["_bleu_sys_len"] = bleu_data[0]
logging_output["_bleu_ref_len"] = bleu_data[1]
for i in range(EVAL_BLEU_ORDER):
logging_output["_bleu_counts_" + str(i)] = bleu_data[2 + i]
logging_output["_bleu_totals_" + str(i)] = bleu_data[
2 + EVAL_BLEU_ORDER + i
]
elif self.cfg.target_metric == "ter":
assert sample["target"].shape[1] == 3, (
"target does not contain enough information ("
+ str(sample["target"].shape[1])
+ "for evaluating TER"
)
max_id = torch.argmax(scores, dim=1)
select_id = max_id + torch.arange(
0, sample_size * self.cfg.mt_beam, self.cfg.mt_beam
).to(max_id.device)
ter_data = sample["target"][select_id, 1:].sum(0).data
logging_output["_ter_num_edits"] = -ter_data[0]
logging_output["_ter_ref_len"] = -ter_data[1]
return loss, sample_size, logging_output
def reduce_metrics(self, logging_outputs, criterion):
super().reduce_metrics(logging_outputs, criterion)
if not self.cfg.eval_target_metric:
return
def sum_logs(key):
return sum(log.get(key, 0) for log in logging_outputs)
if self.cfg.target_metric == "bleu":
counts, totals = [], []
for i in range(EVAL_BLEU_ORDER):
counts.append(sum_logs("_bleu_counts_" + str(i)))
totals.append(sum_logs("_bleu_totals_" + str(i)))
if max(totals) > 0:
# log counts as numpy arrays -- log_scalar will sum them correctly
metrics.log_scalar("_bleu_counts", np.array(counts))
metrics.log_scalar("_bleu_totals", np.array(totals))
metrics.log_scalar("_bleu_sys_len", sum_logs("_bleu_sys_len"))
metrics.log_scalar("_bleu_ref_len", sum_logs("_bleu_ref_len"))
def compute_bleu(meters):
import inspect
import sacrebleu
fn_sig = inspect.getfullargspec(sacrebleu.compute_bleu)[0]
if "smooth_method" in fn_sig:
smooth = {"smooth_method": "exp"}
else:
smooth = {"smooth": "exp"}
bleu = sacrebleu.compute_bleu(
correct=meters["_bleu_counts"].sum,
total=meters["_bleu_totals"].sum,
sys_len=meters["_bleu_sys_len"].sum,
ref_len=meters["_bleu_ref_len"].sum,
**smooth,
)
return round(bleu.score, 2)
metrics.log_derived("bleu", compute_bleu)
elif self.cfg.target_metric == "ter":
num_edits = sum_logs("_ter_num_edits")
ref_len = sum_logs("_ter_ref_len")
if ref_len > 0:
metrics.log_scalar("_ter_num_edits", num_edits)
metrics.log_scalar("_ter_ref_len", ref_len)
def compute_ter(meters):
score = meters["_ter_num_edits"].sum / meters["_ter_ref_len"].sum
return round(score.item(), 2)
metrics.log_derived("ter", compute_ter)
|