File size: 10,717 Bytes
ee21b96
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
#!/usr/bin/env python3
"""Calculates the Frechet Inception Distance (FID) to evalulate GANs

The FID metric calculates the distance between two distributions of images.
Typically, we have summary statistics (mean & covariance matrix) of one
of these distributions, while the 2nd distribution is given by a GAN.

When run as a stand-alone program, it compares the distribution of
images that are stored as PNG/JPEG at a specified location with a
distribution given by summary statistics (in pickle format).

The FID is calculated by assuming that X_1 and X_2 are the activations of
the pool_3 layer of the inception net for generated samples and real world
samples respectivly.

See --help to see further details.

Code apapted from https://github.com/bioinf-jku/TTUR to use PyTorch instead
of Tensorflow

Copyright 2018 Institute of Bioinformatics, JKU Linz

Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at

   http://www.apache.org/licenses/LICENSE-2.0

Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License.
"""
import os
from argparse import ArgumentParser, ArgumentDefaultsHelpFormatter

import numpy as np
import torch
import torch.utils.data
import torchvision.transforms as transforms
import tqdm
from PIL import Image
from scipy import linalg
from torch.nn.functional import adaptive_avg_pool2d
from torch.utils import data

from eval_utils.inceptionV3 import InceptionV3

class Dataset(data.Dataset):
    'Characterizes a dataset for PyTorch'

    def __init__(self, path, transform=None):
        'Initialization'
        self.file_names = self.get_filenames(path)
        self.transform = transform

    def __len__(self):
        'Denotes the total number of samples'
        return len(self.file_names)

    def __getitem__(self, index):
        'Generates one sample of data'
        img = Image.open(self.file_names[index]).convert('RGB')
        # Convert image and label to torch tensors
        if self.transform is not None:
            img = self.transform(img)
        return img

    def get_filenames(self, data_path):
        images = []
        for path, subdirs, files in os.walk(data_path):
            for name in files:
                if name.rfind('jpg') != -1 or name.rfind('png') != -1:
                    filename = os.path.join(path, name)
                    if os.path.isfile(filename):
                        images.append(filename)
        return images


parser = ArgumentParser(formatter_class=ArgumentDefaultsHelpFormatter)
parser.add_argument('--batch-size', type=int, default=64,
                    help='Batch size to use')
parser.add_argument('--dims', type=int, default=2048,
                    choices=list(InceptionV3.BLOCK_INDEX_BY_DIM),
                    help=('Dimensionality of Inception features to use. '
                          'By default, uses pool3 features'))
parser.add_argument('-c', '--gpu', default='', type=str,
                    help='GPU to use (leave blank for CPU only)')
parser.add_argument('--path1', type=str, help='path to images')
parser.add_argument('--path2', type=str, help='path to images')


def get_activations(images, model, batch_size=64, dims=2048, cuda=False, verbose=True):
    """Calculates the activations of the pool_3 layer for all images.

    Params:
    -- images      : Numpy array of dimension (n_images, 3, hi, wi). The values
                     must lie between 0 and 1.
    -- model       : Instance of inception model
    -- batch_size  : the images numpy array is split into batches with
                     batch size batch_size. A reasonable batch size depends
                     on the hardware.
    -- dims        : Dimensionality of features returned by Inception
    -- cuda        : If set to True, use GPU
    -- verbose     : If set to True and parameter out_step is given, the number
                     of calculated batches is reported.
    Returns:
    -- A numpy array of dimension (num images, dims) that contains the
       activations of the given tensor when feeding inception with the
       query tensor.
    """
    model.eval()

    # d0 = images.shape[0]

    d0 = images.__len__() * batch_size
    if batch_size > d0:
        print(('Warning: batch size is bigger than the data size. '
               'Setting batch size to data size'))
        batch_size = d0

    n_batches = d0 // batch_size
    n_used_imgs = n_batches * batch_size

    pred_arr = np.empty((n_used_imgs, dims))
    # for i in range(n_batches):
    for i, batch in tqdm.tqdm(enumerate(images)):
        # batch = batch[0]
        # if verbose:
        # print('\rPropagating batch %d/%d' % (i + 1, n_batches), end='', flush=True)
        # import ipdb
        # ipdb.set_trace()
        start = i * batch_size
        end = start + batch_size

        # batch = torch.from_numpy(images[start:end]).type(torch.FloatTensor)
        # batch = Variable(batch, volatile=True)

        if cuda:
            batch = batch.cuda()

        pred = model(batch)[0]

        # If model output is not scalar, apply global spatial average pooling.
        # This happens if you choose a dimensionality not equal 2048.
        if pred.shape[2] != 1 or pred.shape[3] != 1:
            pred = adaptive_avg_pool2d(pred, output_size=(1, 1))

        pred_arr[start:end] = pred.cpu().data.numpy().reshape(batch_size, -1)

    if verbose:
        print(' done')

    return pred_arr


def calculate_frechet_distance(mu1, sigma1, mu2, sigma2, eps=1e-6):
    """Numpy implementation of the Frechet Distance.
    The Frechet distance between two multivariate Gaussians X_1 ~ N(mu_1, C_1)
    and X_2 ~ N(mu_2, C_2) is
            d^2 = ||mu_1 - mu_2||^2 + Tr(C_1 + C_2 - 2*sqrt(C_1*C_2)).

    Stable version by Dougal J. Sutherland.

    Params:
    -- mu1   : Numpy array containing the activations of a layer of the
               inception net (like returned by the function 'get_predictions')
               for generated samples.
    -- mu2   : The sample mean over activations, precalculated on an
               representive data set.
    -- sigma1: The covariance matrix over activations for generated samples.
    -- sigma2: The covariance matrix over activations, precalculated on an
               representive data set.

    Returns:
    --   : The Frechet Distance.
    """

    mu1 = np.atleast_1d(mu1)
    mu2 = np.atleast_1d(mu2)

    sigma1 = np.atleast_2d(sigma1)
    sigma2 = np.atleast_2d(sigma2)

    assert mu1.shape == mu2.shape, \
        'Training and test mean vectors have different lengths'
    assert sigma1.shape == sigma2.shape, \
        'Training and test covariances have different dimensions'

    diff = mu1 - mu2

    # Product might be almost singular
    covmean, _ = linalg.sqrtm(sigma1.dot(sigma2), disp=False)
    if not np.isfinite(covmean).all():
        msg = ('fid calculation produces singular product; '
               'adding %s to diagonal of cov estimates') % eps
        print(msg)
        offset = np.eye(sigma1.shape[0]) * eps
        covmean = linalg.sqrtm((sigma1 + offset).dot(sigma2 + offset))

    # Numerical error might give slight imaginary component
    if np.iscomplexobj(covmean):
        if not np.allclose(np.diagonal(covmean).imag, 0, atol=1e-3):
            m = np.max(np.abs(covmean.imag))
            raise ValueError('Imaginary component {}'.format(m))
        covmean = covmean.real

    tr_covmean = np.trace(covmean)

    return (diff.dot(diff) + np.trace(sigma1) +
            np.trace(sigma2) - 2 * tr_covmean)


def calculate_activation_statistics(images, model, batch_size=64,
                                    dims=2048, cuda=False, verbose=True):
    """Calculation of the statistics used by the FID.
    Params:
    -- images      : Numpy array of dimension (n_images, 3, hi, wi). The values
                     must lie between 0 and 1.
    -- model       : Instance of inception model
    -- batch_size  : The images numpy array is split into batches with
                     batch size batch_size. A reasonable batch size
                     depends on the hardware.
    -- dims        : Dimensionality of features returned by Inception
    -- cuda        : If set to True, use GPU
    -- verbose     : If set to True and parameter out_step is given, the
                     number of calculated batches is reported.
    Returns:
    -- mu    : The mean over samples of the activations of the pool_3 layer of
               the inception model.
    -- sigma : The covariance matrix of the activations of the pool_3 layer of
               the inception model.
    """
    act = get_activations(images, model, batch_size, dims, cuda, verbose)
    mu = np.mean(act, axis=0)
    sigma = np.cov(act, rowvar=False)
    return mu, sigma


def _compute_statistics_of_path(path, model, batch_size, dims, cuda):
    if path.endswith('.npz'):
        f = np.load(path)
        m, s = f['mu'][:], f['sigma'][:]
        f.close()

    else:
        dataset = Dataset(path, transforms.Compose([
            transforms.Resize((299, 299)),
            transforms.ToTensor(),
        ]))
        print(dataset.__len__())
        if dataset.__len__() < batch_size:
            batch_size = 1
        dataloader = torch.utils.data.DataLoader(dataset=dataset, batch_size=batch_size, shuffle=False, drop_last=True,
                                                 num_workers=0)
        m, s = calculate_activation_statistics(dataloader, model, batch_size, dims, cuda)
    return m, s


def calculate_fid_given_paths(paths, batch_size, cuda, dims):
    """Calculates the FID of two paths"""
    for p in paths:
        if not os.path.exists(p):
            raise RuntimeError('Invalid path: %s' % p)

    block_idx = InceptionV3.BLOCK_INDEX_BY_DIM[dims]

    model = InceptionV3([block_idx])
    if cuda:
        model.cuda()

    m1, s1 = _compute_statistics_of_path(paths[0], model, batch_size, dims, cuda)
    m2, s2 = _compute_statistics_of_path(paths[1], model, batch_size, dims, cuda)
    fid_value = calculate_frechet_distance(m1, s1, m2, s2)
    return fid_value


if __name__ == '__main__':
    args = parser.parse_args()
    os.environ['CUDA_VISIBLE_DEVICES'] = args.gpu
    paths = ["", ""]
    paths[0] = args.path1
    paths[1] = args.path2
    print(paths)
    fid_value = calculate_fid_given_paths(paths, args.batch_size, args.gpu, args.dims)
    print('FID: ', fid_value)