Spaces:
Runtime error
Runtime error
# Multilingual Translation | |
[[Multilingual Translation with Extensible Multilingual Pretraining and Finetuning, https://arxiv.org/abs/2008.00401]](https://arxiv.org/abs/2008.00401) | |
## Introduction | |
This work is for training multilingual translation models with multiple bitext datasets. This multilingual translation framework supports (see [[training section]](#Training) and [[finetuning section]](#Finetuning) for examples) | |
* temperature based sampling over unbalancing datasets of different translation directions | |
- --sampling-method' with | |
choices=['uniform', 'temperature', 'concat'] | |
- --sampling-temperature | |
* configurable to automatically add source and/or target language tokens to source/target sentences using data which are prepared in the same way as bilignual training | |
- --encoder-langtok with choices=['src', 'tgt', None] to specify whether to add source or target language tokens to the source sentences | |
- --decoder-langtok (binary option) to specify whether to add target language tokens to the target sentences or not | |
* finetuning mBART pretrained models for multilingual translation | |
- --finetune-from-model to specify the path from which to load the pretrained model | |
## Preprocessing data | |
Multilingual training requires a joint BPE vocab. Please follow [mBART's preprocessing steps](https://github.com/pytorch/fairseq/tree/main/examples/mbart#bpe-data) to reuse our pretrained sentence-piece model. | |
You can also train a joint BPE model on your own dataset and then follow the steps in [[link]](https://github.com/pytorch/fairseq/tree/main/examples/translation#multilingual-translation). | |
## Training | |
```bash | |
lang_pairs=<language pairs to be trained, e.g. "en-cs,cs-en"> | |
path_2_data=<set to data path> | |
lang_list=<a file which contains a list of languages separated by new lines> | |
fairseq-train $path_2_data \ | |
--encoder-normalize-before --decoder-normalize-before \ | |
--arch transformer --layernorm-embedding \ | |
--task translation_multi_simple_epoch \ | |
--sampling-method "temperature" \ | |
--sampling-temperature 1.5 \ | |
--encoder-langtok "src" \ | |
--decoder-langtok \ | |
--lang-dict "$lang_list" \ | |
--lang-pairs "$lang_pairs" \ | |
--criterion label_smoothed_cross_entropy --label-smoothing 0.2 \ | |
--optimizer adam --adam-eps 1e-06 --adam-betas '(0.9, 0.98)' \ | |
--lr-scheduler inverse_sqrt --lr 3e-05 --warmup-updates 2500 --max-update 40000 \ | |
--dropout 0.3 --attention-dropout 0.1 --weight-decay 0.0 \ | |
--max-tokens 1024 --update-freq 2 \ | |
--save-interval 1 --save-interval-updates 5000 --keep-interval-updates 10 --no-epoch-checkpoints \ | |
--seed 222 --log-format simple --log-interval 2 | |
``` | |
## Finetuning | |
We can also finetune multilingual models from a monolingual pretrained models, e.g. [mMBART](https://github.com/pytorch/fairseq/tree/main/examples/mbart). | |
```bash | |
lang_pairs=<language pairs to be trained, e.g. "en-cs,cs-en"> | |
path_2_data=<set to data path> | |
lang_list=<a file which contains a list of languages separated by new lines> | |
pretrained_model=<path to the pretrained model, e.g. mbart or another trained multilingual model> | |
fairseq-train $path_2_data \ | |
--finetune-from-model $pretrained_model \ | |
--encoder-normalize-before --decoder-normalize-before \ | |
--arch transformer --layernorm-embedding \ | |
--task translation_multi_simple_epoch \ | |
--sampling-method "temperature" \ | |
--sampling-temperature 1.5 \ | |
--encoder-langtok "src" \ | |
--decoder-langtok \ | |
--lang-dict "$lang_list" \ | |
--lang-pairs "$lang_pairs" \ | |
--criterion label_smoothed_cross_entropy --label-smoothing 0.2 \ | |
--optimizer adam --adam-eps 1e-06 --adam-betas '(0.9, 0.98)' \ | |
--lr-scheduler inverse_sqrt --lr 3e-05 --warmup-updates 2500 --max-update 40000 \ | |
--dropout 0.3 --attention-dropout 0.1 --weight-decay 0.0 \ | |
--max-tokens 1024 --update-freq 2 \ | |
--save-interval 1 --save-interval-updates 5000 --keep-interval-updates 10 --no-epoch-checkpoints \ | |
--seed 222 --log-format simple --log-interval 2 | |
``` | |
## Generate | |
The following command uses the multilingual task (translation_multi_simple_epoch) to generate translation from $source_lang to $target_lang on the test dataset. During generaton, the source language tokens are added to source sentences and the target language tokens are added as the starting token to decode target sentences. Options --lang-dict and --lang-pairs are needed to tell the generation process the ordered list of languages and translation directions that the trained model are awared of; they will need to be consistent with the training. | |
```bash | |
model=<multilingual model> | |
source_lang=<source language> | |
target_lang=<target language> | |
fairseq-generate $path_2_data \ | |
--path $model \ | |
--task translation_multi_simple_epoch \ | |
--gen-subset test \ | |
--source-lang $source_lang \ | |
--target-lang $target_lang | |
--sacrebleu --remove-bpe 'sentencepiece'\ | |
--batch-size 32 \ | |
--encoder-langtok "src" \ | |
--decoder-langtok \ | |
--lang-dict "$lang_list" \ | |
--lang-pairs "$lang_pairs" > ${source_lang}_${target_lang}.txt | |
``` | |
Fairseq will generate translation into a file {source_lang}_${target_lang}.txt with sacreblue at the end. | |
You can also use costomized tokenizer to compare the performance with the literature. For example, you get a tokenizer [here](https://github.com/rsennrich/wmt16-scripts) and do the following: | |
```bash | |
TOKENIZER=<path to a customized tokenizer for decoding evaluation> | |
TOK_CMD=<"$TOKENIZER $target_lang" or cat for sacrebleu> | |
cat {source_lang}_${target_lang}.txt | grep -P "^H" |sort -V |cut -f 3- |$TOK_CMD > ${source_lang}_${target_lang}.hyp | |
cat {source_lang}_${target_lang}.txt | grep -P "^T" |sort -V |cut -f 2- |$TOK_CMD > ${source_lang}_${target_lang}.ref | |
sacrebleu -tok 'none' -s 'none' ${source_lang}_${target_lang}.ref < ${source_lang}_${target_lang}.hyp | |
``` | |
# mBART50 models | |
* [mMBART 50 pretrained model](https://dl.fbaipublicfiles.com/fairseq/models/mbart50/mbart50.pretrained.tar.gz). | |
* [mMBART 50 finetuned many-to-one](https://dl.fbaipublicfiles.com/fairseq/models/mbart50/mbart50.ft.n1.tar.gz). | |
* [mMBART 50 finetuned one-to-many](https://dl.fbaipublicfiles.com/fairseq/models/mbart50/mbart50.ft.1n.tar.gz). | |
* [mMBART 50 finetuned many-to-many](https://dl.fbaipublicfiles.com/fairseq/models/mbart50/mbart50.ft.nn.tar.gz). | |
Please download and extract from the above tarballs. Each tarball contains | |
* The fairseq model checkpoint: model.pt | |
* The list of supported languages: ML50_langs.txt | |
* Sentence piece model: sentence.bpe.model | |
* Fairseq dictionary of each language: dict.{lang}.txt (please replace lang with a language specified in ML50_langs.txt) | |
To use the trained models, | |
* use the tool [binarize.py](./data_scripts/binarize.py) to binarize your data using sentence.bpe.model and dict.{lang}.txt, and copy the dictionaries to your data path | |
* then run the generation command: | |
```bash | |
path_2_data=<path to your binarized data with fairseq dictionaries> | |
model=<path_to_extracted_folder>/model.pt | |
lang_list=<path_to_extracted_folder>/ML50_langs.txt | |
source_lang=<source language> | |
target_lang=<target language> | |
fairseq-generate $path_2_data \ | |
--path $model \ | |
--task translation_multi_simple_epoch \ | |
--gen-subset test \ | |
--source-lang $source_lang \ | |
--target-lang $target_lang | |
--sacrebleu --remove-bpe 'sentencepiece'\ | |
--batch-size 32 \ | |
--encoder-langtok "src" \ | |
--decoder-langtok \ | |
--lang-dict "$lang_list" | |
``` | |
## Citation | |
```bibtex | |
@article{tang2020multilingual, | |
title={Multilingual Translation with Extensible Multilingual Pretraining and Finetuning}, | |
author={Yuqing Tang and Chau Tran and Xian Li and Peng-Jen Chen and Naman Goyal and Vishrav Chaudhary and Jiatao Gu and Angela Fan}, | |
year={2020}, | |
eprint={2008.00401}, | |
archivePrefix={arXiv}, | |
primaryClass={cs.CL} | |
} | |
``` | |