File size: 9,928 Bytes
c9bb3f2
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
# Copyright (c) Facebook, Inc. and its affiliates.
#
# This source code is licensed under the MIT license found in the
# LICENSE file in the root directory of this source tree.

import argparse
import logging
from pathlib import Path
import shutil
from tempfile import NamedTemporaryFile
from collections import Counter, defaultdict

import pandas as pd
import torchaudio
from tqdm import tqdm

from fairseq.data.audio.audio_utils import convert_waveform
from examples.speech_to_text.data_utils import (
    create_zip,
    gen_config_yaml,
    gen_vocab,
    get_zip_manifest,
    load_tsv_to_dicts,
    save_df_to_tsv
)
from examples.speech_synthesis.data_utils import (
    extract_logmel_spectrogram, extract_pitch, extract_energy, get_global_cmvn,
    ipa_phonemize, get_mfa_alignment, get_unit_alignment
)


log = logging.getLogger(__name__)


def process(args):
    assert "train" in args.splits
    out_root = Path(args.output_root).absolute()
    out_root.mkdir(exist_ok=True)

    print("Fetching data...")
    audio_manifest_root = Path(args.audio_manifest_root).absolute()
    samples = []
    for s in args.splits:
        for e in load_tsv_to_dicts(audio_manifest_root / f"{s}.audio.tsv"):
            e["split"] = s
            samples.append(e)
    sample_ids = [s["id"] for s in samples]

    # Get alignment info
    id_to_alignment = None
    if args.textgrid_zip is not None:
        assert args.id_to_units_tsv is None
        id_to_alignment = get_mfa_alignment(
            args.textgrid_zip, sample_ids, args.sample_rate, args.hop_length
        )
    elif args.id_to_units_tsv is not None:
        # assume identical hop length on the unit sequence
        id_to_alignment = get_unit_alignment(args.id_to_units_tsv, sample_ids)

    # Extract features and pack features into ZIP
    feature_name = "logmelspec80"
    zip_path = out_root / f"{feature_name}.zip"
    pitch_zip_path = out_root / "pitch.zip"
    energy_zip_path = out_root / "energy.zip"
    gcmvn_npz_path = out_root / "gcmvn_stats.npz"
    if zip_path.exists() and gcmvn_npz_path.exists():
        print(f"{zip_path} and {gcmvn_npz_path} exist.")
    else:
        feature_root = out_root / feature_name
        feature_root.mkdir(exist_ok=True)
        pitch_root = out_root / "pitch"
        energy_root = out_root / "energy"
        if args.add_fastspeech_targets:
            pitch_root.mkdir(exist_ok=True)
            energy_root.mkdir(exist_ok=True)
        print("Extracting Mel spectrogram features...")
        for sample in tqdm(samples):
            waveform, sample_rate = torchaudio.load(sample["audio"])
            waveform, sample_rate = convert_waveform(
                waveform, sample_rate, normalize_volume=args.normalize_volume,
                to_sample_rate=args.sample_rate
            )
            sample_id = sample["id"]
            target_length = None
            if id_to_alignment is not None:
                a = id_to_alignment[sample_id]
                target_length = sum(a.frame_durations)
                if a.start_sec is not None and a.end_sec is not None:
                    start_frame = int(a.start_sec * sample_rate)
                    end_frame = int(a.end_sec * sample_rate)
                    waveform = waveform[:, start_frame: end_frame]
            extract_logmel_spectrogram(
                waveform, sample_rate, feature_root / f"{sample_id}.npy",
                win_length=args.win_length, hop_length=args.hop_length,
                n_fft=args.n_fft, n_mels=args.n_mels, f_min=args.f_min,
                f_max=args.f_max, target_length=target_length
            )
            if args.add_fastspeech_targets:
                assert id_to_alignment is not None
                extract_pitch(
                    waveform, sample_rate, pitch_root / f"{sample_id}.npy",
                    hop_length=args.hop_length, log_scale=True,
                    phoneme_durations=id_to_alignment[sample_id].frame_durations
                )
                extract_energy(
                    waveform, energy_root / f"{sample_id}.npy",
                    hop_length=args.hop_length, n_fft=args.n_fft,
                    log_scale=True,
                    phoneme_durations=id_to_alignment[sample_id].frame_durations
                )
        print("ZIPing features...")
        create_zip(feature_root, zip_path)
        get_global_cmvn(feature_root, gcmvn_npz_path)
        shutil.rmtree(feature_root)
        if args.add_fastspeech_targets:
            create_zip(pitch_root, pitch_zip_path)
            shutil.rmtree(pitch_root)
            create_zip(energy_root, energy_zip_path)
            shutil.rmtree(energy_root)

    print("Fetching ZIP manifest...")
    audio_paths, audio_lengths = get_zip_manifest(zip_path)
    pitch_paths, pitch_lengths, energy_paths, energy_lengths = [None] * 4
    if args.add_fastspeech_targets:
        pitch_paths, pitch_lengths = get_zip_manifest(pitch_zip_path)
        energy_paths, energy_lengths = get_zip_manifest(energy_zip_path)
    # Generate TSV manifest
    print("Generating manifest...")
    manifest_by_split = {split: defaultdict(list) for split in args.splits}
    for sample in tqdm(samples):
        sample_id, split = sample["id"], sample["split"]
        normalized_utt = sample["tgt_text"]
        if id_to_alignment is not None:
            normalized_utt = " ".join(id_to_alignment[sample_id].tokens)
        elif args.ipa_vocab:
            normalized_utt = ipa_phonemize(
                normalized_utt, lang=args.lang, use_g2p=args.use_g2p
            )
        manifest_by_split[split]["id"].append(sample_id)
        manifest_by_split[split]["audio"].append(audio_paths[sample_id])
        manifest_by_split[split]["n_frames"].append(audio_lengths[sample_id])
        manifest_by_split[split]["tgt_text"].append(normalized_utt)
        manifest_by_split[split]["speaker"].append(sample["speaker"])
        manifest_by_split[split]["src_text"].append(sample["src_text"])
        if args.add_fastspeech_targets:
            assert id_to_alignment is not None
            duration = " ".join(
                str(d) for d in id_to_alignment[sample_id].frame_durations
            )
            manifest_by_split[split]["duration"].append(duration)
            manifest_by_split[split]["pitch"].append(pitch_paths[sample_id])
            manifest_by_split[split]["energy"].append(energy_paths[sample_id])
    for split in args.splits:
        save_df_to_tsv(
            pd.DataFrame.from_dict(manifest_by_split[split]),
            out_root / f"{split}.tsv"
        )
    # Generate vocab
    vocab_name, spm_filename = None, None
    if id_to_alignment is not None or args.ipa_vocab:
        vocab = Counter()
        for t in manifest_by_split["train"]["tgt_text"]:
            vocab.update(t.split(" "))
        vocab_name = "vocab.txt"
        with open(out_root / vocab_name, "w") as f:
            for s, c in vocab.most_common():
                f.write(f"{s} {c}\n")
    else:
        spm_filename_prefix = "spm_char"
        spm_filename = f"{spm_filename_prefix}.model"
        with NamedTemporaryFile(mode="w") as f:
            for t in manifest_by_split["train"]["tgt_text"]:
                f.write(t + "\n")
            f.flush()  # needed to ensure gen_vocab sees dumped text
            gen_vocab(Path(f.name), out_root / spm_filename_prefix, "char")
    # Generate speaker list
    speakers = sorted({sample["speaker"] for sample in samples})
    speakers_path = out_root / "speakers.txt"
    with open(speakers_path, "w") as f:
        for speaker in speakers:
            f.write(f"{speaker}\n")
    # Generate config YAML
    win_len_t = args.win_length / args.sample_rate
    hop_len_t = args.hop_length / args.sample_rate
    extra = {
        "sample_rate": args.sample_rate,
        "features": {
            "type": "spectrogram+melscale+log",
            "eps": 1e-2, "n_mels": args.n_mels, "n_fft": args.n_fft,
            "window_fn": "hann", "win_length": args.win_length,
            "hop_length": args.hop_length, "sample_rate": args.sample_rate,
            "win_len_t": win_len_t, "hop_len_t": hop_len_t,
            "f_min": args.f_min, "f_max": args.f_max,
            "n_stft": args.n_fft // 2 + 1
        }
    }
    if len(speakers) > 1:
        extra["speaker_set_filename"] = "speakers.txt"
    gen_config_yaml(
        out_root, spm_filename=spm_filename, vocab_name=vocab_name,
        audio_root=out_root.as_posix(), input_channels=None,
        input_feat_per_channel=None, specaugment_policy=None,
        cmvn_type="global", gcmvn_path=gcmvn_npz_path, extra=extra
    )


def main():
    parser = argparse.ArgumentParser()
    parser.add_argument("--audio-manifest-root", "-m", required=True, type=str)
    parser.add_argument("--output-root", "-o", required=True, type=str)
    parser.add_argument("--splits", "-s", type=str, nargs="+",
                        default=["train", "dev", "test"])
    parser.add_argument("--ipa-vocab", action="store_true")
    parser.add_argument("--use-g2p", action="store_true")
    parser.add_argument("--lang", type=str, default="en-us")
    parser.add_argument("--win-length", type=int, default=1024)
    parser.add_argument("--hop-length", type=int, default=256)
    parser.add_argument("--n-fft", type=int, default=1024)
    parser.add_argument("--n-mels", type=int, default=80)
    parser.add_argument("--f-min", type=int, default=20)
    parser.add_argument("--f-max", type=int, default=8000)
    parser.add_argument("--sample-rate", type=int, default=22050)
    parser.add_argument("--normalize-volume", "-n", action="store_true")
    parser.add_argument("--textgrid-zip", type=str, default=None)
    parser.add_argument("--id-to-units-tsv", type=str, default=None)
    parser.add_argument("--add-fastspeech-targets", action="store_true")
    args = parser.parse_args()

    process(args)


if __name__ == "__main__":
    main()