Spaces:
Build error
Build error
File size: 9,928 Bytes
c9bb3f2 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 |
# Copyright (c) Facebook, Inc. and its affiliates.
#
# This source code is licensed under the MIT license found in the
# LICENSE file in the root directory of this source tree.
import argparse
import logging
from pathlib import Path
import shutil
from tempfile import NamedTemporaryFile
from collections import Counter, defaultdict
import pandas as pd
import torchaudio
from tqdm import tqdm
from fairseq.data.audio.audio_utils import convert_waveform
from examples.speech_to_text.data_utils import (
create_zip,
gen_config_yaml,
gen_vocab,
get_zip_manifest,
load_tsv_to_dicts,
save_df_to_tsv
)
from examples.speech_synthesis.data_utils import (
extract_logmel_spectrogram, extract_pitch, extract_energy, get_global_cmvn,
ipa_phonemize, get_mfa_alignment, get_unit_alignment
)
log = logging.getLogger(__name__)
def process(args):
assert "train" in args.splits
out_root = Path(args.output_root).absolute()
out_root.mkdir(exist_ok=True)
print("Fetching data...")
audio_manifest_root = Path(args.audio_manifest_root).absolute()
samples = []
for s in args.splits:
for e in load_tsv_to_dicts(audio_manifest_root / f"{s}.audio.tsv"):
e["split"] = s
samples.append(e)
sample_ids = [s["id"] for s in samples]
# Get alignment info
id_to_alignment = None
if args.textgrid_zip is not None:
assert args.id_to_units_tsv is None
id_to_alignment = get_mfa_alignment(
args.textgrid_zip, sample_ids, args.sample_rate, args.hop_length
)
elif args.id_to_units_tsv is not None:
# assume identical hop length on the unit sequence
id_to_alignment = get_unit_alignment(args.id_to_units_tsv, sample_ids)
# Extract features and pack features into ZIP
feature_name = "logmelspec80"
zip_path = out_root / f"{feature_name}.zip"
pitch_zip_path = out_root / "pitch.zip"
energy_zip_path = out_root / "energy.zip"
gcmvn_npz_path = out_root / "gcmvn_stats.npz"
if zip_path.exists() and gcmvn_npz_path.exists():
print(f"{zip_path} and {gcmvn_npz_path} exist.")
else:
feature_root = out_root / feature_name
feature_root.mkdir(exist_ok=True)
pitch_root = out_root / "pitch"
energy_root = out_root / "energy"
if args.add_fastspeech_targets:
pitch_root.mkdir(exist_ok=True)
energy_root.mkdir(exist_ok=True)
print("Extracting Mel spectrogram features...")
for sample in tqdm(samples):
waveform, sample_rate = torchaudio.load(sample["audio"])
waveform, sample_rate = convert_waveform(
waveform, sample_rate, normalize_volume=args.normalize_volume,
to_sample_rate=args.sample_rate
)
sample_id = sample["id"]
target_length = None
if id_to_alignment is not None:
a = id_to_alignment[sample_id]
target_length = sum(a.frame_durations)
if a.start_sec is not None and a.end_sec is not None:
start_frame = int(a.start_sec * sample_rate)
end_frame = int(a.end_sec * sample_rate)
waveform = waveform[:, start_frame: end_frame]
extract_logmel_spectrogram(
waveform, sample_rate, feature_root / f"{sample_id}.npy",
win_length=args.win_length, hop_length=args.hop_length,
n_fft=args.n_fft, n_mels=args.n_mels, f_min=args.f_min,
f_max=args.f_max, target_length=target_length
)
if args.add_fastspeech_targets:
assert id_to_alignment is not None
extract_pitch(
waveform, sample_rate, pitch_root / f"{sample_id}.npy",
hop_length=args.hop_length, log_scale=True,
phoneme_durations=id_to_alignment[sample_id].frame_durations
)
extract_energy(
waveform, energy_root / f"{sample_id}.npy",
hop_length=args.hop_length, n_fft=args.n_fft,
log_scale=True,
phoneme_durations=id_to_alignment[sample_id].frame_durations
)
print("ZIPing features...")
create_zip(feature_root, zip_path)
get_global_cmvn(feature_root, gcmvn_npz_path)
shutil.rmtree(feature_root)
if args.add_fastspeech_targets:
create_zip(pitch_root, pitch_zip_path)
shutil.rmtree(pitch_root)
create_zip(energy_root, energy_zip_path)
shutil.rmtree(energy_root)
print("Fetching ZIP manifest...")
audio_paths, audio_lengths = get_zip_manifest(zip_path)
pitch_paths, pitch_lengths, energy_paths, energy_lengths = [None] * 4
if args.add_fastspeech_targets:
pitch_paths, pitch_lengths = get_zip_manifest(pitch_zip_path)
energy_paths, energy_lengths = get_zip_manifest(energy_zip_path)
# Generate TSV manifest
print("Generating manifest...")
manifest_by_split = {split: defaultdict(list) for split in args.splits}
for sample in tqdm(samples):
sample_id, split = sample["id"], sample["split"]
normalized_utt = sample["tgt_text"]
if id_to_alignment is not None:
normalized_utt = " ".join(id_to_alignment[sample_id].tokens)
elif args.ipa_vocab:
normalized_utt = ipa_phonemize(
normalized_utt, lang=args.lang, use_g2p=args.use_g2p
)
manifest_by_split[split]["id"].append(sample_id)
manifest_by_split[split]["audio"].append(audio_paths[sample_id])
manifest_by_split[split]["n_frames"].append(audio_lengths[sample_id])
manifest_by_split[split]["tgt_text"].append(normalized_utt)
manifest_by_split[split]["speaker"].append(sample["speaker"])
manifest_by_split[split]["src_text"].append(sample["src_text"])
if args.add_fastspeech_targets:
assert id_to_alignment is not None
duration = " ".join(
str(d) for d in id_to_alignment[sample_id].frame_durations
)
manifest_by_split[split]["duration"].append(duration)
manifest_by_split[split]["pitch"].append(pitch_paths[sample_id])
manifest_by_split[split]["energy"].append(energy_paths[sample_id])
for split in args.splits:
save_df_to_tsv(
pd.DataFrame.from_dict(manifest_by_split[split]),
out_root / f"{split}.tsv"
)
# Generate vocab
vocab_name, spm_filename = None, None
if id_to_alignment is not None or args.ipa_vocab:
vocab = Counter()
for t in manifest_by_split["train"]["tgt_text"]:
vocab.update(t.split(" "))
vocab_name = "vocab.txt"
with open(out_root / vocab_name, "w") as f:
for s, c in vocab.most_common():
f.write(f"{s} {c}\n")
else:
spm_filename_prefix = "spm_char"
spm_filename = f"{spm_filename_prefix}.model"
with NamedTemporaryFile(mode="w") as f:
for t in manifest_by_split["train"]["tgt_text"]:
f.write(t + "\n")
f.flush() # needed to ensure gen_vocab sees dumped text
gen_vocab(Path(f.name), out_root / spm_filename_prefix, "char")
# Generate speaker list
speakers = sorted({sample["speaker"] for sample in samples})
speakers_path = out_root / "speakers.txt"
with open(speakers_path, "w") as f:
for speaker in speakers:
f.write(f"{speaker}\n")
# Generate config YAML
win_len_t = args.win_length / args.sample_rate
hop_len_t = args.hop_length / args.sample_rate
extra = {
"sample_rate": args.sample_rate,
"features": {
"type": "spectrogram+melscale+log",
"eps": 1e-2, "n_mels": args.n_mels, "n_fft": args.n_fft,
"window_fn": "hann", "win_length": args.win_length,
"hop_length": args.hop_length, "sample_rate": args.sample_rate,
"win_len_t": win_len_t, "hop_len_t": hop_len_t,
"f_min": args.f_min, "f_max": args.f_max,
"n_stft": args.n_fft // 2 + 1
}
}
if len(speakers) > 1:
extra["speaker_set_filename"] = "speakers.txt"
gen_config_yaml(
out_root, spm_filename=spm_filename, vocab_name=vocab_name,
audio_root=out_root.as_posix(), input_channels=None,
input_feat_per_channel=None, specaugment_policy=None,
cmvn_type="global", gcmvn_path=gcmvn_npz_path, extra=extra
)
def main():
parser = argparse.ArgumentParser()
parser.add_argument("--audio-manifest-root", "-m", required=True, type=str)
parser.add_argument("--output-root", "-o", required=True, type=str)
parser.add_argument("--splits", "-s", type=str, nargs="+",
default=["train", "dev", "test"])
parser.add_argument("--ipa-vocab", action="store_true")
parser.add_argument("--use-g2p", action="store_true")
parser.add_argument("--lang", type=str, default="en-us")
parser.add_argument("--win-length", type=int, default=1024)
parser.add_argument("--hop-length", type=int, default=256)
parser.add_argument("--n-fft", type=int, default=1024)
parser.add_argument("--n-mels", type=int, default=80)
parser.add_argument("--f-min", type=int, default=20)
parser.add_argument("--f-max", type=int, default=8000)
parser.add_argument("--sample-rate", type=int, default=22050)
parser.add_argument("--normalize-volume", "-n", action="store_true")
parser.add_argument("--textgrid-zip", type=str, default=None)
parser.add_argument("--id-to-units-tsv", type=str, default=None)
parser.add_argument("--add-fastspeech-targets", action="store_true")
args = parser.parse_args()
process(args)
if __name__ == "__main__":
main()
|