File size: 4,149 Bytes
c9bb3f2
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
# Copyright (c) Facebook, Inc. and its affiliates.
#
# This source code is licensed under the MIT license found in the
# LICENSE file in the root directory of this source tree.


"""
Signal processing-based evaluation using waveforms
"""

import csv
import numpy as np
import os.path as op

import torch
import tqdm
from tabulate import tabulate
import torchaudio

from examples.speech_synthesis.utils import batch_mel_spectral_distortion
from fairseq.tasks.text_to_speech import batch_mel_cepstral_distortion


def load_eval_spec(path):
    with open(path) as f:
        reader = csv.DictReader(f, delimiter='\t')
        samples = list(reader)
    return samples


def eval_distortion(samples, distortion_fn, device="cuda"):
    nmiss = 0
    results = []
    for sample in tqdm.tqdm(samples):
        if not op.isfile(sample["ref"]) or not op.isfile(sample["syn"]):
            nmiss += 1
            results.append(None)
            continue
        # assume single channel
        yref, sr = torchaudio.load(sample["ref"])
        ysyn, _sr = torchaudio.load(sample["syn"])
        yref, ysyn = yref[0].to(device), ysyn[0].to(device)
        assert sr == _sr, f"{sr} != {_sr}"

        distortion, extra = distortion_fn([yref], [ysyn], sr, None)[0]
        _, _, _, _, _, pathmap = extra
        nins = torch.sum(pathmap.sum(dim=1) - 1)  # extra frames in syn
        ndel = torch.sum(pathmap.sum(dim=0) - 1)  # missing frames from syn
        results.append(
            (distortion.item(),  # path distortion
             pathmap.size(0),  # yref num frames
             pathmap.size(1),  # ysyn num frames
             pathmap.sum().item(),  # path length
             nins.item(),  # insertion
             ndel.item(),  # deletion
             )
        )
    return results


def eval_mel_cepstral_distortion(samples, device="cuda"):
    return eval_distortion(samples, batch_mel_cepstral_distortion, device)


def eval_mel_spectral_distortion(samples, device="cuda"):
    return eval_distortion(samples, batch_mel_spectral_distortion, device)


def print_results(results, show_bin):
    results = np.array(list(filter(lambda x: x is not None, results)))

    np.set_printoptions(precision=3)

    def _print_result(results):
        dist, dur_ref, dur_syn, dur_ali, nins, ndel = results.sum(axis=0)
        res = {
            "nutt": len(results),
            "dist": dist,
            "dur_ref": int(dur_ref),
            "dur_syn": int(dur_syn),
            "dur_ali": int(dur_ali),
            "dist_per_ref_frm": dist/dur_ref,
            "dist_per_syn_frm": dist/dur_syn,
            "dist_per_ali_frm": dist/dur_ali,
            "ins": nins/dur_ref,
            "del": ndel/dur_ref,
        }
        print(tabulate(
            [res.values()],
            res.keys(),
            floatfmt=".4f"
        ))

    print(">>>> ALL")
    _print_result(results)

    if show_bin:
        edges = [0, 200, 400, 600, 800, 1000, 2000, 4000]
        for i in range(1, len(edges)):
            mask = np.logical_and(results[:, 1] >= edges[i-1],
                                  results[:, 1] < edges[i])
            if not mask.any():
                continue
            bin_results = results[mask]
            print(f">>>> ({edges[i-1]}, {edges[i]})")
            _print_result(bin_results)


def main(eval_spec, mcd, msd, show_bin):
    samples = load_eval_spec(eval_spec)
    device = "cpu"
    if mcd:
        print("===== Evaluate Mean Cepstral Distortion =====")
        results = eval_mel_cepstral_distortion(samples, device)
        print_results(results, show_bin)
    if msd:
        print("===== Evaluate Mean Spectral Distortion =====")
        results = eval_mel_spectral_distortion(samples, device)
        print_results(results, show_bin)


if __name__ == "__main__":
    import argparse
    parser = argparse.ArgumentParser()
    parser.add_argument("eval_spec")
    parser.add_argument("--mcd", action="store_true")
    parser.add_argument("--msd", action="store_true")
    parser.add_argument("--show-bin", action="store_true")
    args = parser.parse_args()

    main(args.eval_spec, args.mcd, args.msd, args.show_bin)