File size: 8,334 Bytes
c9bb3f2
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
# Copyright (c) Facebook, Inc. and its affiliates.
#
# This source code is licensed under the MIT license found in the
# LICENSE file in the root directory of this source tree.

"""
Signal processing-based evaluation using waveforms
"""
import numpy as np
import os.path as op

import torchaudio
import tqdm
from tabulate import tabulate

from examples.speech_synthesis.utils import (
    gross_pitch_error, voicing_decision_error, f0_frame_error
)
from examples.speech_synthesis.evaluation.eval_sp import load_eval_spec


def difference_function(x, n, tau_max):
    """
    Compute difference function of data x. This solution is implemented directly
    with Numpy fft.


    :param x: audio data
    :param n: length of data
    :param tau_max: integration window size
    :return: difference function
    :rtype: list
    """

    x = np.array(x, np.float64)
    w = x.size
    tau_max = min(tau_max, w)
    x_cumsum = np.concatenate((np.array([0.]), (x * x).cumsum()))
    size = w + tau_max
    p2 = (size // 32).bit_length()
    nice_numbers = (16, 18, 20, 24, 25, 27, 30, 32)
    size_pad = min(x * 2 ** p2 for x in nice_numbers if x * 2 ** p2 >= size)
    fc = np.fft.rfft(x, size_pad)
    conv = np.fft.irfft(fc * fc.conjugate())[:tau_max]
    return x_cumsum[w:w - tau_max:-1] + x_cumsum[w] - x_cumsum[:tau_max] - \
        2 * conv


def cumulative_mean_normalized_difference_function(df, n):
    """
    Compute cumulative mean normalized difference function (CMND).

    :param df: Difference function
    :param n: length of data
    :return: cumulative mean normalized difference function
    :rtype: list
    """

    # scipy method
    cmn_df = df[1:] * range(1, n) / np.cumsum(df[1:]).astype(float)
    return np.insert(cmn_df, 0, 1)


def get_pitch(cmdf, tau_min, tau_max, harmo_th=0.1):
    """
    Return fundamental period of a frame based on CMND function.

    :param cmdf: Cumulative Mean Normalized Difference function
    :param tau_min: minimum period for speech
    :param tau_max: maximum period for speech
    :param harmo_th: harmonicity threshold to determine if it is necessary to
    compute pitch frequency
    :return: fundamental period if there is values under threshold, 0 otherwise
    :rtype: float
    """
    tau = tau_min
    while tau < tau_max:
        if cmdf[tau] < harmo_th:
            while tau + 1 < tau_max and cmdf[tau + 1] < cmdf[tau]:
                tau += 1
            return tau
        tau += 1

    return 0    # if unvoiced


def compute_yin(sig, sr, w_len=512, w_step=256, f0_min=100, f0_max=500,
                harmo_thresh=0.1):
    """

    Compute the Yin Algorithm. Return fundamental frequency and harmonic rate.

    https://github.com/NVIDIA/mellotron adaption of
    https://github.com/patriceguyot/Yin

    :param sig: Audio signal (list of float)
    :param sr: sampling rate (int)
    :param w_len: size of the analysis window (samples)
    :param w_step: size of the lag between two consecutives windows (samples)
    :param f0_min: Minimum fundamental frequency that can be detected (hertz)
    :param f0_max: Maximum fundamental frequency that can be detected (hertz)
    :param harmo_thresh: Threshold of detection. The yalgorithmù return the
    first minimum of the CMND function below this threshold.

    :returns:

        * pitches: list of fundamental frequencies,
        * harmonic_rates: list of harmonic rate values for each fundamental
        frequency value (= confidence value)
        * argmins: minimums of the Cumulative Mean Normalized DifferenceFunction
        * times: list of time of each estimation
    :rtype: tuple
    """

    tau_min = int(sr / f0_max)
    tau_max = int(sr / f0_min)

    # time values for each analysis window
    time_scale = range(0, len(sig) - w_len, w_step)
    times = [t/float(sr) for t in time_scale]
    frames = [sig[t:t + w_len] for t in time_scale]

    pitches = [0.0] * len(time_scale)
    harmonic_rates = [0.0] * len(time_scale)
    argmins = [0.0] * len(time_scale)

    for i, frame in enumerate(frames):
        # Compute YIN
        df = difference_function(frame, w_len, tau_max)
        cm_df = cumulative_mean_normalized_difference_function(df, tau_max)
        p = get_pitch(cm_df, tau_min, tau_max, harmo_thresh)

        # Get results
        if np.argmin(cm_df) > tau_min:
            argmins[i] = float(sr / np.argmin(cm_df))
        if p != 0:  # A pitch was found
            pitches[i] = float(sr / p)
            harmonic_rates[i] = cm_df[p]
        else:  # No pitch, but we compute a value of the harmonic rate
            harmonic_rates[i] = min(cm_df)

    return pitches, harmonic_rates, argmins, times


def extract_f0(samples):
    f0_samples = []
    for sample in tqdm.tqdm(samples):
        if not op.isfile(sample["ref"]) or not op.isfile(sample["syn"]):
            f0_samples.append(None)
            continue

        # assume single channel
        yref, sr = torchaudio.load(sample["ref"])
        ysyn, _sr = torchaudio.load(sample["syn"])
        yref, ysyn = yref[0], ysyn[0]
        assert sr == _sr, f"{sr} != {_sr}"

        yref_f0 = compute_yin(yref, sr)
        ysyn_f0 = compute_yin(ysyn, sr)

        f0_samples += [
            {
                "ref": yref_f0,
                "syn": ysyn_f0
            }
        ]

    return f0_samples


def eval_f0_error(samples, distortion_fn):
    results = []
    for sample in tqdm.tqdm(samples):
        if sample is None:
            results.append(None)
            continue
        # assume single channel
        yref_f, _, _, yref_t = sample["ref"]
        ysyn_f, _, _, ysyn_t = sample["syn"]

        yref_f = np.array(yref_f)
        yref_t = np.array(yref_t)
        ysyn_f = np.array(ysyn_f)
        ysyn_t = np.array(ysyn_t)

        distortion = distortion_fn(yref_t, yref_f, ysyn_t, ysyn_f)
        results.append((distortion.item(),
                        len(yref_f),
                        len(ysyn_f)
                        ))
    return results


def eval_gross_pitch_error(samples):
    return eval_f0_error(samples, gross_pitch_error)


def eval_voicing_decision_error(samples):
    return eval_f0_error(samples, voicing_decision_error)


def eval_f0_frame_error(samples):
    return eval_f0_error(samples, f0_frame_error)


def print_results(results, show_bin):
    results = np.array(list(filter(lambda x: x is not None, results)))

    np.set_printoptions(precision=3)

    def _print_result(results):
        res = {
            "nutt": len(results),
            "error": results[:, 0].mean(),
            "std": results[:, 0].std(),
            "dur_ref": int(results[:, 1].sum()),
            "dur_syn": int(results[:, 2].sum()),
        }
        print(tabulate([res.values()], res.keys(), floatfmt=".4f"))

    print(">>>> ALL")
    _print_result(results)

    if show_bin:
        edges = [0, 200, 400, 600, 800, 1000, 2000, 4000]
        for i in range(1, len(edges)):
            mask = np.logical_and(results[:, 1] >= edges[i-1],
                                  results[:, 1] < edges[i])
            if not mask.any():
                continue
            bin_results = results[mask]
            print(f">>>> ({edges[i-1]}, {edges[i]})")
            _print_result(bin_results)


def main(eval_f0, gpe, vde, ffe, show_bin):
    samples = load_eval_spec(eval_f0)
    if gpe or vde or ffe:
        f0_samples = extract_f0(samples)

    if gpe:
        print("===== Evaluate Gross Pitch Error =====")
        results = eval_gross_pitch_error(f0_samples)
        print_results(results, show_bin)
    if vde:
        print("===== Evaluate Voicing Decision Error =====")
        results = eval_voicing_decision_error(f0_samples)
        print_results(results, show_bin)
    if ffe:
        print("===== Evaluate F0 Frame Error =====")
        results = eval_f0_frame_error(f0_samples)
        print_results(results, show_bin)


if __name__ == "__main__":
    import argparse

    parser = argparse.ArgumentParser()
    parser.add_argument("eval_f0")
    parser.add_argument("--gpe", action="store_true")
    parser.add_argument("--vde", action="store_true")
    parser.add_argument("--ffe", action="store_true")
    parser.add_argument("--show-bin", action="store_true")
    args = parser.parse_args()

    main(args.eval_f0, args.gpe, args.vde, args.ffe, args.show_bin)