File size: 7,473 Bytes
c9bb3f2
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
#!/usr/bin/env python3 -u
# Copyright (c) Facebook, Inc. and its affiliates.
#
# This source code is licensed under the MIT license found in the
# LICENSE file in the root directory of this source tree.
"""
Translate pre-processed data with a trained model.
"""

import numpy as np
import torch
from fairseq import checkpoint_utils, options, progress_bar, tasks, utils
from fairseq.sequence_generator import EnsembleModel
from fairseq.utils import safe_hasattr


def get_avg_pool(
    models, sample, prefix_tokens, src_dict, remove_bpe, has_langtok=False
):
    model = EnsembleModel(models)

    # model.forward normally channels prev_output_tokens into the decoder
    # separately, but SequenceGenerator directly calls model.encoder
    encoder_input = {
        k: v for k, v in sample["net_input"].items() if k != "prev_output_tokens"
    }

    # compute the encoder output for each beam
    encoder_outs = model.forward_encoder(encoder_input)
    np_encoder_outs = encoder_outs[0].encoder_out.cpu().numpy().astype(np.float32)
    encoder_mask = 1 - encoder_outs[0].encoder_padding_mask.cpu().numpy().astype(
        np.float32
    )
    encoder_mask = np.expand_dims(encoder_mask.T, axis=2)
    if has_langtok:
        encoder_mask = encoder_mask[1:, :, :]
        np_encoder_outs = np_encoder_outs[1, :, :]
    masked_encoder_outs = encoder_mask * np_encoder_outs
    avg_pool = (masked_encoder_outs / encoder_mask.sum(axis=0)).sum(axis=0)
    return avg_pool


def main(args):
    assert args.path is not None, "--path required for generation!"
    assert (
        not args.sampling or args.nbest == args.beam
    ), "--sampling requires --nbest to be equal to --beam"
    assert (
        args.replace_unk is None or args.raw_text
    ), "--replace-unk requires a raw text dataset (--raw-text)"

    args.beam = 1
    utils.import_user_module(args)

    if args.max_tokens is None:
        args.max_tokens = 12000
    print(args)
    use_cuda = torch.cuda.is_available() and not args.cpu

    # Load dataset splits
    task = tasks.setup_task(args)
    task.load_dataset(args.gen_subset)

    # Set dictionaries
    try:
        src_dict = getattr(task, "source_dictionary", None)
    except NotImplementedError:
        src_dict = None
    tgt_dict = task.target_dictionary

    # Load ensemble
    print("| loading model(s) from {}".format(args.path))
    models, _model_args = checkpoint_utils.load_model_ensemble(
        args.path.split(":"),
        arg_overrides=eval(args.model_overrides),
        task=task,
    )

    # Optimize ensemble for generation
    for model in models:
        model.make_generation_fast_(
            beamable_mm_beam_size=None if args.no_beamable_mm else args.beam,
            need_attn=args.print_alignment,
        )
        if args.fp16:
            model.half()
        if use_cuda:
            model.cuda()

    # Load alignment dictionary for unknown word replacement
    # (None if no unknown word replacement, empty if no path to align dictionary)
    align_dict = utils.load_align_dict(args.replace_unk)

    # Load dataset (possibly sharded)
    itr = task.get_batch_iterator(
        dataset=task.dataset(args.gen_subset),
        max_tokens=args.max_tokens,
        max_positions=utils.resolve_max_positions(
            task.max_positions(),
        ),
        ignore_invalid_inputs=args.skip_invalid_size_inputs_valid_test,
        required_batch_size_multiple=args.required_batch_size_multiple,
        num_shards=args.num_shards,
        shard_id=args.shard_id,
        num_workers=args.num_workers,
    ).next_epoch_itr(shuffle=False)

    num_sentences = 0
    source_sentences = []
    shard_id = 0
    all_avg_pool = None
    encoder_has_langtok = (
        safe_hasattr(task.args, "encoder_langtok")
        and task.args.encoder_langtok is not None
        and safe_hasattr(task.args, "lang_tok_replacing_bos_eos")
        and not task.args.lang_tok_replacing_bos_eos
    )
    with progress_bar.build_progress_bar(args, itr) as t:
        for sample in t:
            if sample is None:
                print("Skipping None")
                continue
            sample = utils.move_to_cuda(sample) if use_cuda else sample
            if "net_input" not in sample:
                continue

            prefix_tokens = None
            if args.prefix_size > 0:
                prefix_tokens = sample["target"][:, : args.prefix_size]

            with torch.no_grad():
                avg_pool = get_avg_pool(
                    models,
                    sample,
                    prefix_tokens,
                    src_dict,
                    args.post_process,
                    has_langtok=encoder_has_langtok,
                )
                if all_avg_pool is not None:
                    all_avg_pool = np.concatenate((all_avg_pool, avg_pool))
                else:
                    all_avg_pool = avg_pool

            if not isinstance(sample["id"], list):
                sample_ids = sample["id"].tolist()
            else:
                sample_ids = sample["id"]
            for i, sample_id in enumerate(sample_ids):
                # Remove padding
                src_tokens = utils.strip_pad(
                    sample["net_input"]["src_tokens"][i, :], tgt_dict.pad()
                )

                # Either retrieve the original sentences or regenerate them from tokens.
                if align_dict is not None:
                    src_str = task.dataset(args.gen_subset).src.get_original_text(
                        sample_id
                    )
                else:
                    if src_dict is not None:
                        src_str = src_dict.string(src_tokens, args.post_process)
                    else:
                        src_str = ""

                if not args.quiet:
                    if src_dict is not None:
                        print("S-{}\t{}".format(sample_id, src_str))

                source_sentences.append(f"{sample_id}\t{src_str}")

            num_sentences += sample["nsentences"]
            if all_avg_pool.shape[0] >= 1000000:
                with open(
                    f"{args.encoder_save_dir}/all_avg_pool.{args.source_lang}.{shard_id}",
                    "w",
                ) as avg_pool_file:
                    all_avg_pool.tofile(avg_pool_file)
                with open(
                    f"{args.encoder_save_dir}/sentences.{args.source_lang}.{shard_id}",
                    "w",
                ) as sentence_file:
                    sentence_file.writelines(f"{line}\n" for line in source_sentences)
                all_avg_pool = None
                source_sentences = []
                shard_id += 1

    if all_avg_pool is not None:
        with open(
            f"{args.encoder_save_dir}/all_avg_pool.{args.source_lang}.{shard_id}", "w"
        ) as avg_pool_file:
            all_avg_pool.tofile(avg_pool_file)
        with open(
            f"{args.encoder_save_dir}/sentences.{args.source_lang}.{shard_id}", "w"
        ) as sentence_file:
            sentence_file.writelines(f"{line}\n" for line in source_sentences)
    return None


def cli_main():
    parser = options.get_generation_parser()
    parser.add_argument(
        "--encoder-save-dir",
        default="",
        type=str,
        metavar="N",
        help="directory to save encoder outputs",
    )
    args = options.parse_args_and_arch(parser)
    main(args)


if __name__ == "__main__":
    cli_main()