File size: 39,945 Bytes
bfa59ab
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133
1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
#!/usr/bin/env python
# -*- coding:utf-8 -*-
# Power by Zongsheng Yue 2021-11-24 16:54:19

import sys
import cv2
import math
import torch
import random
import numpy as np
from scipy import fft
from pathlib import Path
from einops import rearrange
from skimage import img_as_ubyte, img_as_float32

# --------------------------Metrics----------------------------
def ssim(img1, img2):
    C1 = (0.01 * 255)**2
    C2 = (0.03 * 255)**2

    img1 = img1.astype(np.float64)
    img2 = img2.astype(np.float64)
    kernel = cv2.getGaussianKernel(11, 1.5)
    window = np.outer(kernel, kernel.transpose())

    mu1 = cv2.filter2D(img1, -1, window)[5:-5, 5:-5]  # valid
    mu2 = cv2.filter2D(img2, -1, window)[5:-5, 5:-5]
    mu1_sq = mu1**2
    mu2_sq = mu2**2
    mu1_mu2 = mu1 * mu2
    sigma1_sq = cv2.filter2D(img1**2, -1, window)[5:-5, 5:-5] - mu1_sq
    sigma2_sq = cv2.filter2D(img2**2, -1, window)[5:-5, 5:-5] - mu2_sq
    sigma12 = cv2.filter2D(img1 * img2, -1, window)[5:-5, 5:-5] - mu1_mu2

    ssim_map = ((2 * mu1_mu2 + C1) * (2 * sigma12 + C2)) / ((mu1_sq + mu2_sq + C1) *
                                                            (sigma1_sq + sigma2_sq + C2))
    return ssim_map.mean()

def calculate_ssim(im1, im2, border=0, ycbcr=False):
    '''
    SSIM the same outputs as MATLAB's
    im1, im2: h x w x , [0, 255], uint8
    '''
    if not im1.shape == im2.shape:
        raise ValueError('Input images must have the same dimensions.')

    if ycbcr:
        im1 = rgb2ycbcr(im1, True)
        im2 = rgb2ycbcr(im2, True)

    h, w = im1.shape[:2]
    im1 = im1[border:h-border, border:w-border]
    im2 = im2[border:h-border, border:w-border]

    if im1.ndim == 2:
        return ssim(im1, im2)
    elif im1.ndim == 3:
        if im1.shape[2] == 3:
            ssims = []
            for i in range(3):
                ssims.append(ssim(im1[:,:,i], im2[:,:,i]))
            return np.array(ssims).mean()
        elif im1.shape[2] == 1:
            return ssim(np.squeeze(im1), np.squeeze(im2))
    else:
        raise ValueError('Wrong input image dimensions.')

def calculate_psnr(im1, im2, border=0, ycbcr=False):
    '''
    PSNR metric.
    im1, im2: h x w x , [0, 255], uint8
    '''
    if not im1.shape == im2.shape:
        raise ValueError('Input images must have the same dimensions.')

    if ycbcr:
        im1 = rgb2ycbcr(im1, True)
        im2 = rgb2ycbcr(im2, True)

    h, w = im1.shape[:2]
    im1 = im1[border:h-border, border:w-border]
    im2 = im2[border:h-border, border:w-border]

    im1 = im1.astype(np.float64)
    im2 = im2.astype(np.float64)
    mse = np.mean((im1 - im2)**2)
    if mse == 0:
        return float('inf')
    return 20 * math.log10(255.0 / math.sqrt(mse))

def normalize_np(im, mean=0.5, std=0.5, reverse=False):
    '''
    Input:
        im: h x w x c, numpy array
        Normalize: (im - mean) / std
        Reverse: im * std + mean

    '''
    if not isinstance(mean, (list, tuple)):
        mean = [mean, ] * im.shape[2]
    mean = np.array(mean).reshape([1, 1, im.shape[2]])

    if not isinstance(std, (list, tuple)):
        std = [std, ] * im.shape[2]
    std = np.array(std).reshape([1, 1, im.shape[2]])

    if not reverse:
        out = (im.astype(np.float32) - mean) / std
    else:
        out = im.astype(np.float32) * std + mean
    return out

def normalize_th(im, mean=0.5, std=0.5, reverse=False):
    '''
    Input:
        im: b x c x h x w, torch tensor
        Normalize: (im - mean) / std
        Reverse: im * std + mean

    '''
    if not isinstance(mean, (list, tuple)):
        mean = [mean, ] * im.shape[1]
    mean = torch.tensor(mean, device=im.device).view([1, im.shape[1], 1, 1])

    if not isinstance(std, (list, tuple)):
        std = [std, ] * im.shape[1]
    std = torch.tensor(std, device=im.device).view([1, im.shape[1], 1, 1])

    if not reverse:
        out = (im - mean) / std
    else:
        out = im * std + mean
    return out

# ------------------------Image format--------------------------
def rgb2ycbcr(im, only_y=True):
    '''
    same as matlab rgb2ycbcr
    Input:
        im: uint8 [0,255] or float [0,1]
        only_y: only return Y channel
    '''
    # transform to float64 data type, range [0, 255]
    if im.dtype == np.uint8:
        im_temp = im.astype(np.float64)
    else:
        im_temp = (im * 255).astype(np.float64)

    # convert
    if only_y:
        rlt = np.dot(im_temp, np.array([65.481, 128.553, 24.966])/ 255.0) + 16.0
    else:
        rlt = np.matmul(im_temp, np.array([[65.481,  -37.797, 112.0  ],
                                           [128.553, -74.203, -93.786],
                                           [24.966,  112.0,   -18.214]])/255.0) + [16, 128, 128]
    if im.dtype == np.uint8:
        rlt = rlt.round()
    else:
        rlt /= 255.
    return rlt.astype(im.dtype)

def rgb2ycbcrTorch(im, only_y=True):
    '''
    same as matlab rgb2ycbcr
    Input:
        im: float [0,1], N x 3 x H x W
        only_y: only return Y channel
    '''
    # transform to range [0,255.0]
    im_temp = im.permute([0,2,3,1]) * 255.0  # N x H x W x C --> N x H x W x C
    # convert
    if only_y:
        rlt = torch.matmul(im_temp, torch.tensor([65.481, 128.553, 24.966],
                                        device=im.device, dtype=im.dtype).view([3,1])/ 255.0) + 16.0
    else:
        scale = torch.tensor(
            [[65.481,  -37.797, 112.0  ],
             [128.553, -74.203, -93.786],
             [24.966,  112.0,   -18.214]],
            device=im.device, dtype=im.dtype
        ) / 255.0
        bias = torch.tensor([16, 128, 128], device=im.device, dtype=im.dtype).view([-1, 1, 1, 3])
        rlt = torch.matmul(im_temp, scale) + bias

    rlt /= 255.0
    rlt.clamp_(0.0, 1.0)
    return rlt.permute([0, 3, 1, 2])

def ycbcr2rgbTorch(im):
    '''
    same as matlab ycbcr2rgb
    Input:
        im: float [0,1], N x 3 x H x W
        only_y: only return Y channel
    '''
    # transform to range [0,255.0]
    im_temp = im.permute([0,2,3,1]) * 255.0  # N x H x W x C --> N x H x W x C
    # convert
    scale = torch.tensor(
        [[0.00456621, 0.00456621, 0.00456621],
         [0, -0.00153632, 0.00791071],
         [0.00625893, -0.00318811, 0]],
        device=im.device, dtype=im.dtype
        ) * 255.0
    bias = torch.tensor(
        [-222.921, 135.576, -276.836], device=im.device, dtype=im.dtype
    ).view([-1, 1, 1, 3])
    rlt = torch.matmul(im_temp, scale) + bias
    rlt /= 255.0
    rlt.clamp_(0.0, 1.0)
    return rlt.permute([0, 3, 1, 2])

def bgr2rgb(im): return cv2.cvtColor(im, cv2.COLOR_BGR2RGB)

def rgb2bgr(im): return cv2.cvtColor(im, cv2.COLOR_RGB2BGR)

def tensor2img(tensor, rgb2bgr=True, out_type=np.uint8, min_max=(0, 1)):
    """Convert torch Tensors into image numpy arrays.

    After clamping to [min, max], values will be normalized to [0, 1].

    Args:
        tensor (Tensor or list[Tensor]): Accept shapes:
            1) 4D mini-batch Tensor of shape (B x 3/1 x H x W);
            2) 3D Tensor of shape (3/1 x H x W);
            3) 2D Tensor of shape (H x W).
            Tensor channel should be in RGB order.
        rgb2bgr (bool): Whether to change rgb to bgr.
        out_type (numpy type): output types. If ``np.uint8``, transform outputs
            to uint8 type with range [0, 255]; otherwise, float type with
            range [0, 1]. Default: ``np.uint8``.
        min_max (tuple[int]): min and max values for clamp.

    Returns:
        (Tensor or list): 3D ndarray of shape (H x W x C) OR 2D ndarray of
        shape (H x W). The channel order is BGR.
    """
    if not (torch.is_tensor(tensor) or (isinstance(tensor, list) and all(torch.is_tensor(t) for t in tensor))):
        raise TypeError(f'tensor or list of tensors expected, got {type(tensor)}')

    flag_tensor = torch.is_tensor(tensor)
    if flag_tensor:
        tensor = [tensor]
    result = []
    for _tensor in tensor:
        _tensor = _tensor.squeeze(0).float().detach().cpu().clamp_(*min_max)
        _tensor = (_tensor - min_max[0]) / (min_max[1] - min_max[0])

        n_dim = _tensor.dim()
        if n_dim == 4:
            img_np = make_grid(_tensor, nrow=int(math.sqrt(_tensor.size(0))), normalize=False).numpy()
            img_np = img_np.transpose(1, 2, 0)
            if rgb2bgr:
                img_np = cv2.cvtColor(img_np, cv2.COLOR_RGB2BGR)
        elif n_dim == 3:
            img_np = _tensor.numpy()
            img_np = img_np.transpose(1, 2, 0)
            if img_np.shape[2] == 1:  # gray image
                img_np = np.squeeze(img_np, axis=2)
            else:
                if rgb2bgr:
                    img_np = cv2.cvtColor(img_np, cv2.COLOR_RGB2BGR)
        elif n_dim == 2:
            img_np = _tensor.numpy()
        else:
            raise TypeError(f'Only support 4D, 3D or 2D tensor. But received with dimension: {n_dim}')
        if out_type == np.uint8:
            # Unlike MATLAB, numpy.unit8() WILL NOT round by default.
            img_np = (img_np * 255.0).round()
        img_np = img_np.astype(out_type)
        result.append(img_np)
    if len(result) == 1 and flag_tensor:
        result = result[0]
    return result

def img2tensor(imgs, bgr2rgb=False, out_type=torch.float32):
    """Convert image numpy arrays into torch tensor.
    Args:
        imgs (Array or list[array]): Accept shapes:
            3) list of numpy arrays
            1) 3D numpy array of shape (H x W x 3/1);
            2) 2D Tensor of shape (H x W).
            Tensor channel should be in RGB order.

    Returns:
        (array or list): 4D ndarray of shape (1 x C x H x W)
    """

    def _img2tensor(img):
        if img.ndim == 2:
            tensor = torch.from_numpy(img[None, None,]).type(out_type)
        elif img.ndim == 3:
            if bgr2rgb:
                img = cv2.cvtColor(img, cv2.COLOR_BGR2RGB)
            tensor = torch.from_numpy(rearrange(img, 'h w c -> c h w')).type(out_type).unsqueeze(0)
        else:
            raise TypeError(f'2D or 3D numpy array expected, got{img.ndim}D array')
        return tensor

    if not (isinstance(imgs, np.ndarray) or (isinstance(imgs, list) and all(isinstance(t, np.ndarray) for t in imgs))):
        raise TypeError(f'Numpy array or list of numpy array expected, got {type(imgs)}')

    flag_numpy = isinstance(imgs, np.ndarray)
    if flag_numpy:
        imgs = [imgs,]
    result = []
    for _img in imgs:
        result.append(_img2tensor(_img))

    if len(result) == 1 and flag_numpy:
        result = result[0]
    return result

# ------------------------Image resize-----------------------------
def imresize_np(img, scale, antialiasing=True):
    # Now the scale should be the same for H and W
    # input: img: Numpy, HWC or HW [0,1]
    # output: HWC or HW [0,1] w/o round
    img = torch.from_numpy(img)
    need_squeeze = True if img.dim() == 2 else False
    if need_squeeze:
        img.unsqueeze_(2)

    in_H, in_W, in_C = img.size()
    out_C, out_H, out_W = in_C, math.ceil(in_H * scale), math.ceil(in_W * scale)
    kernel_width = 4
    kernel = 'cubic'

    # Return the desired dimension order for performing the resize.  The
    # strategy is to perform the resize first along the dimension with the
    # smallest scale factor.
    # Now we do not support this.

    # get weights and indices
    weights_H, indices_H, sym_len_Hs, sym_len_He = calculate_weights_indices(
        in_H, out_H, scale, kernel, kernel_width, antialiasing)
    weights_W, indices_W, sym_len_Ws, sym_len_We = calculate_weights_indices(
        in_W, out_W, scale, kernel, kernel_width, antialiasing)
    # process H dimension
    # symmetric copying
    img_aug = torch.FloatTensor(in_H + sym_len_Hs + sym_len_He, in_W, in_C)
    img_aug.narrow(0, sym_len_Hs, in_H).copy_(img)

    sym_patch = img[:sym_len_Hs, :, :]
    inv_idx = torch.arange(sym_patch.size(0) - 1, -1, -1).long()
    sym_patch_inv = sym_patch.index_select(0, inv_idx)
    img_aug.narrow(0, 0, sym_len_Hs).copy_(sym_patch_inv)

    sym_patch = img[-sym_len_He:, :, :]
    inv_idx = torch.arange(sym_patch.size(0) - 1, -1, -1).long()
    sym_patch_inv = sym_patch.index_select(0, inv_idx)
    img_aug.narrow(0, sym_len_Hs + in_H, sym_len_He).copy_(sym_patch_inv)

    out_1 = torch.FloatTensor(out_H, in_W, in_C)
    kernel_width = weights_H.size(1)
    for i in range(out_H):
        idx = int(indices_H[i][0])
        for j in range(out_C):
            out_1[i, :, j] = img_aug[idx:idx + kernel_width, :, j].transpose(0, 1).mv(weights_H[i])

    # process W dimension
    # symmetric copying
    out_1_aug = torch.FloatTensor(out_H, in_W + sym_len_Ws + sym_len_We, in_C)
    out_1_aug.narrow(1, sym_len_Ws, in_W).copy_(out_1)

    sym_patch = out_1[:, :sym_len_Ws, :]
    inv_idx = torch.arange(sym_patch.size(1) - 1, -1, -1).long()
    sym_patch_inv = sym_patch.index_select(1, inv_idx)
    out_1_aug.narrow(1, 0, sym_len_Ws).copy_(sym_patch_inv)

    sym_patch = out_1[:, -sym_len_We:, :]
    inv_idx = torch.arange(sym_patch.size(1) - 1, -1, -1).long()
    sym_patch_inv = sym_patch.index_select(1, inv_idx)
    out_1_aug.narrow(1, sym_len_Ws + in_W, sym_len_We).copy_(sym_patch_inv)

    out_2 = torch.FloatTensor(out_H, out_W, in_C)
    kernel_width = weights_W.size(1)
    for i in range(out_W):
        idx = int(indices_W[i][0])
        for j in range(out_C):
            out_2[:, i, j] = out_1_aug[:, idx:idx + kernel_width, j].mv(weights_W[i])
    if need_squeeze:
        out_2.squeeze_()

    return out_2.numpy()

def calculate_weights_indices(in_length, out_length, scale, kernel, kernel_width, antialiasing):
    if (scale < 1) and (antialiasing):
        # Use a modified kernel to simultaneously interpolate and antialias- larger kernel width
        kernel_width = kernel_width / scale

    # Output-space coordinates
    x = torch.linspace(1, out_length, out_length)

    # Input-space coordinates. Calculate the inverse mapping such that 0.5
    # in output space maps to 0.5 in input space, and 0.5+scale in output
    # space maps to 1.5 in input space.
    u = x / scale + 0.5 * (1 - 1 / scale)

    # What is the left-most pixel that can be involved in the computation?
    left = torch.floor(u - kernel_width / 2)

    # What is the maximum number of pixels that can be involved in the
    # computation?  Note: it's OK to use an extra pixel here; if the
    # corresponding weights are all zero, it will be eliminated at the end
    # of this function.
    P = math.ceil(kernel_width) + 2

    # The indices of the input pixels involved in computing the k-th output
    # pixel are in row k of the indices matrix.
    indices = left.view(out_length, 1).expand(out_length, P) + torch.linspace(0, P - 1, P).view(
        1, P).expand(out_length, P)

    # The weights used to compute the k-th output pixel are in row k of the
    # weights matrix.
    distance_to_center = u.view(out_length, 1).expand(out_length, P) - indices
    # apply cubic kernel
    if (scale < 1) and (antialiasing):
        weights = scale * cubic(distance_to_center * scale)
    else:
        weights = cubic(distance_to_center)
    # Normalize the weights matrix so that each row sums to 1.
    weights_sum = torch.sum(weights, 1).view(out_length, 1)
    weights = weights / weights_sum.expand(out_length, P)

    # If a column in weights is all zero, get rid of it. only consider the first and last column.
    weights_zero_tmp = torch.sum((weights == 0), 0)
    if not math.isclose(weights_zero_tmp[0], 0, rel_tol=1e-6):
        indices = indices.narrow(1, 1, P - 2)
        weights = weights.narrow(1, 1, P - 2)
    if not math.isclose(weights_zero_tmp[-1], 0, rel_tol=1e-6):
        indices = indices.narrow(1, 0, P - 2)
        weights = weights.narrow(1, 0, P - 2)
    weights = weights.contiguous()
    indices = indices.contiguous()
    sym_len_s = -indices.min() + 1
    sym_len_e = indices.max() - in_length
    indices = indices + sym_len_s - 1
    return weights, indices, int(sym_len_s), int(sym_len_e)

# matlab 'imresize' function, now only support 'bicubic'
def cubic(x):
    absx = torch.abs(x)
    absx2 = absx**2
    absx3 = absx**3
    return (1.5*absx3 - 2.5*absx2 + 1) * ((absx <= 1).type_as(absx)) + \
        (-0.5*absx3 + 2.5*absx2 - 4*absx + 2) * (((absx > 1)*(absx <= 2)).type_as(absx))

# ------------------------Image I/O-----------------------------
def imread(path, chn='rgb', dtype='float32', force_gray2rgb=True, force_rgba2rgb=False):
    '''
    Read image.
    chn: 'rgb', 'bgr' or 'gray'
    out:
        im: h x w x c, numpy tensor
    '''
    try:
        im = cv2.imread(str(path), cv2.IMREAD_UNCHANGED)  # BGR, uint8
    except:
        print(str(path))

    if im is None:
        print(str(path))

    if chn.lower() == 'gray':
        assert im.ndim == 2, f"{str(path)} can't be successfuly read!"
    else:
        if im.ndim == 2:
            if force_gray2rgb:
                im = np.stack([im, im, im], axis=2)
            else:
                raise ValueError(f"{str(path)} has {im.ndim} channels!")
        elif im.ndim == 4:
            if force_rgba2rgb:
                im = im[:, :, :3]
            else:
                raise ValueError(f"{str(path)} has {im.ndim} channels!")
        else:
            if chn.lower() == 'rgb':
                im = bgr2rgb(im)
            elif chn.lower() == 'bgr':
                pass

    if dtype == 'float32':
        im = im.astype(np.float32) / 255.
    elif dtype ==  'float64':
        im = im.astype(np.float64) / 255.
    elif dtype == 'uint8':
        pass
    else:
        sys.exit('Please input corrected dtype: float32, float64 or uint8!')

    return im

def imwrite(im_in, path, chn='rgb', dtype_in='float32', qf=None):
    '''
    Save image.
    Input:
        im: h x w x c, numpy tensor
        path: the saving path
        chn: the channel order of the im,
    '''
    im = im_in.copy()
    if isinstance(path, str):
        path = Path(path)
    if dtype_in != 'uint8':
        im = img_as_ubyte(im)

    if chn.lower() == 'rgb' and im.ndim == 3:
        im = rgb2bgr(im)

    if qf is not None and path.suffix.lower() in ['.jpg', '.jpeg']:
        flag = cv2.imwrite(str(path), im, [int(cv2.IMWRITE_JPEG_QUALITY), int(qf)])
    else:
        flag = cv2.imwrite(str(path), im)

    return flag

def jpeg_compress(im, qf, chn_in='rgb'):
    '''
    Input:
        im: h x w x 3 array
        qf: compress factor, (0, 100]
        chn_in: 'rgb' or 'bgr'
    Return:
        Compressed Image with channel order: chn_in
    '''
    # transform to BGR channle and uint8 data type
    im_bgr = rgb2bgr(im) if chn_in.lower() == 'rgb' else im
    if im.dtype != np.dtype('uint8'): im_bgr = img_as_ubyte(im_bgr)

    # JPEG compress
    flag, encimg = cv2.imencode('.jpg', im_bgr, [int(cv2.IMWRITE_JPEG_QUALITY), qf])
    assert flag
    im_jpg_bgr = cv2.imdecode(encimg, 1)    # uint8, BGR

    # transform back to original channel and the original data type
    im_out = bgr2rgb(im_jpg_bgr) if chn_in.lower() == 'rgb' else im_jpg_bgr
    if im.dtype != np.dtype('uint8'): im_out = img_as_float32(im_out).astype(im.dtype)
    return im_out

# ------------------------Augmentation-----------------------------
def data_aug_np(image, mode):
    '''
    Performs data augmentation of the input image
    Input:
        image: a cv2 (OpenCV) image
        mode: int. Choice of transformation to apply to the image
                0 - no transformation
                1 - flip up and down
                2 - rotate counterwise 90 degree
                3 - rotate 90 degree and flip up and down
                4 - rotate 180 degree
                5 - rotate 180 degree and flip
                6 - rotate 270 degree
                7 - rotate 270 degree and flip
    '''
    if mode == 0:
        # original
        out = image
    elif mode == 1:
        # flip up and down
        out = np.flipud(image)
    elif mode == 2:
        # rotate counterwise 90 degree
        out = np.rot90(image)
    elif mode == 3:
        # rotate 90 degree and flip up and down
        out = np.rot90(image)
        out = np.flipud(out)
    elif mode == 4:
        # rotate 180 degree
        out = np.rot90(image, k=2)
    elif mode == 5:
        # rotate 180 degree and flip
        out = np.rot90(image, k=2)
        out = np.flipud(out)
    elif mode == 6:
        # rotate 270 degree
        out = np.rot90(image, k=3)
    elif mode == 7:
        # rotate 270 degree and flip
        out = np.rot90(image, k=3)
        out = np.flipud(out)
    else:
        raise Exception('Invalid choice of image transformation')

    return out.copy()

def inverse_data_aug_np(image, mode):
    '''
    Performs inverse data augmentation of the input image
    '''
    if mode == 0:
        # original
        out = image
    elif mode == 1:
        out = np.flipud(image)
    elif mode == 2:
        out = np.rot90(image, axes=(1,0))
    elif mode == 3:
        out = np.flipud(image)
        out = np.rot90(out, axes=(1,0))
    elif mode == 4:
        out = np.rot90(image, k=2, axes=(1,0))
    elif mode == 5:
        out = np.flipud(image)
        out = np.rot90(out, k=2, axes=(1,0))
    elif mode == 6:
        out = np.rot90(image, k=3, axes=(1,0))
    elif mode == 7:
        # rotate 270 degree and flip
        out = np.flipud(image)
        out = np.rot90(out, k=3, axes=(1,0))
    else:
        raise Exception('Invalid choice of image transformation')

    return out

# ----------------------Visualization----------------------------
def imshow(x, title=None, cbar=False):
    import matplotlib.pyplot as plt
    plt.imshow(np.squeeze(x), interpolation='nearest', cmap='gray')
    if title:
        plt.title(title)
    if cbar:
        plt.colorbar()
    plt.show()

def imblend_with_mask(im, mask, alpha=0.25):
    """
    Input:
        im, mask: h x w x c numpy array, uint8, [0, 255]
        alpha: scaler in [0.0, 1.0]
    """
    edge_map = cv2.Canny(mask, 100, 200).astype(np.float32)[:, :, None] / 255.

    assert mask.dtype == np.uint8
    mask = mask.astype(np.float32) / 255.
    if mask.ndim == 2:
        mask = mask[:, :, None]

    back_color = np.array([159, 121, 238], dtype=np.float32).reshape((1,1,3))
    blend = im.astype(np.float32) * alpha + (1 - alpha) * back_color
    blend = np.clip(blend, 0, 255)
    out = im.astype(np.float32) * (1 - mask) + blend * mask

    # paste edge
    out = out * (1 - edge_map) + np.array([0,255,0], dtype=np.float32).reshape((1,1,3)) * edge_map

    return out.astype(np.uint8)
# -----------------------Covolution------------------------------
def imgrad(im, pading_mode='mirror'):
    '''
    Calculate image gradient.
    Input:
        im: h x w x c numpy array
    '''
    from scipy.ndimage import correlate  # lazy import
    wx = np.array([[0, 0, 0],
                   [-1, 1, 0],
                   [0, 0, 0]], dtype=np.float32)
    wy = np.array([[0, -1, 0],
                   [0, 1, 0],
                   [0, 0, 0]], dtype=np.float32)
    if im.ndim == 3:
        gradx = np.stack(
                [correlate(im[:,:,c], wx, mode=pading_mode) for c in range(im.shape[2])],
                axis=2
                )
        grady = np.stack(
                [correlate(im[:,:,c], wy, mode=pading_mode) for c in range(im.shape[2])],
                axis=2
                )
        grad = np.concatenate((gradx, grady), axis=2)
    else:
        gradx = correlate(im, wx, mode=pading_mode)
        grady = correlate(im, wy, mode=pading_mode)
        grad = np.stack((gradx, grady), axis=2)

    return {'gradx': gradx, 'grady': grady, 'grad':grad}

def imgrad_fft(im):
    '''
    Calculate image gradient.
    Input:
        im: h x w x c numpy array
    '''
    wx = np.rot90(np.array([[0, 0, 0],
                            [-1, 1, 0],
                            [0, 0, 0]], dtype=np.float32), k=2)
    gradx = convfft(im, wx)
    wy = np.rot90(np.array([[0, -1, 0],
                            [0, 1, 0],
                            [0, 0, 0]], dtype=np.float32), k=2)
    grady = convfft(im, wy)
    grad = np.concatenate((gradx, grady), axis=2)

    return {'gradx': gradx, 'grady': grady, 'grad':grad}

def convfft(im, weight):
    '''
    Convolution with FFT
    Input:
        im: h1 x w1 x c numpy array
        weight: h2 x w2 numpy array
    Output:
        out: h1 x w1 x c numpy array
    '''
    axes = (0,1)
    otf = psf2otf(weight, im.shape[:2])
    if im.ndim == 3:
        otf = np.tile(otf[:, :, None], (1,1,im.shape[2]))
    out = fft.ifft2(fft.fft2(im, axes=axes) * otf, axes=axes).real
    return out

def psf2otf(psf, shape):
    """
    MATLAB psf2otf function.
    Borrowed from https://github.com/aboucaud/pypher/blob/master/pypher/pypher.py.
    Input:
        psf : h x w numpy array
        shape : list or tuple, output shape of the OTF array
    Output:
        otf : OTF array with the desirable shape
    """
    if np.all(psf == 0):
        return np.zeros_like(psf)

    inshape = psf.shape
    # Pad the PSF to outsize
    psf = zero_pad(psf, shape, position='corner')

    # Circularly shift OTF so that the 'center' of the PSF is [0,0] element of the array
    for axis, axis_size in enumerate(inshape):
        psf = np.roll(psf, -int(axis_size / 2), axis=axis)

    # Compute the OTF
    otf = fft.fft2(psf)

    # Estimate the rough number of operations involved in the FFT
    # and discard the PSF imaginary part if within roundoff error
    # roundoff error  = machine epsilon = sys.float_info.epsilon
    # or np.finfo().eps
    n_ops = np.sum(psf.size * np.log2(psf.shape))
    otf = np.real_if_close(otf, tol=n_ops)

    return otf

def convtorch(im, weight, mode='reflect'):
    '''
    Image convolution with pytorch
    Input:
        im: b x c_in x h x w torch tensor
        weight: c_out x c_in x k x k torch tensor
    Output:
        out: c x h x w torch tensor
    '''
    radius = weight.shape[-1]
    chn = im.shape[1]
    im_pad = torch.nn.functional.pad(im, pad=(radius // 2, )*4, mode=mode)
    out = torch.nn.functional.conv2d(im_pad, weight, padding=0, groups=chn)
    return out

# ----------------------Patch Cropping----------------------------
def random_crop(im, pch_size):
    '''
    Randomly crop a patch from the give image.
    '''
    h, w = im.shape[:2]
    # padding if necessary
    if h < pch_size or w < pch_size:
        pad_h = min(max(0, pch_size - h), h)
        pad_w = min(max(0, pch_size - w), w)
        im = cv2.copyMakeBorder(im, 0, pad_h, 0, pad_w, cv2.BORDER_REFLECT_101)

    h, w = im.shape[:2]
    if h == pch_size:
        ind_h = 0
    elif h > pch_size:
        ind_h = random.randint(0, h-pch_size)
    else:
        raise ValueError('Image height is smaller than the patch size')
    if w == pch_size:
        ind_w = 0
    elif w > pch_size:
        ind_w = random.randint(0, w-pch_size)
    else:
        raise ValueError('Image width is smaller than the patch size')

    im_pch = im[ind_h:ind_h+pch_size, ind_w:ind_w+pch_size,]

    return im_pch

class ToTensor:
    def __init__(self, max_value=1.0):
        self.max_value = max_value

    def __call__(self, im):
        assert isinstance(im, np.ndarray)
        if im.ndim == 2:
            im = im[:, :, np.newaxis]
        if im.dtype == np.uint8:
            assert self.max_value == 255.
            out = torch.from_numpy(im.astype(np.float32).transpose(2,0,1) / self.max_value)
        else:
            assert self.max_value == 1.0
            out = torch.from_numpy(im.transpose(2,0,1))
        return out

class RandomCrop:
    def __init__(self, pch_size, pass_crop=False):
        self.pch_size = pch_size
        self.pass_crop = pass_crop

    def __call__(self, im):
        if self.pass_crop:
            return im
        if isinstance(im, list) or isinstance(im, tuple):
            out = []
            for current_im in im:
                out.append(random_crop(current_im, self.pch_size))
        else:
            out = random_crop(im, self.pch_size)
        return out

class ImageSpliterNp:
    def __init__(self, im, pch_size, stride, sf=1):
        '''
        Input:
            im: h x w x c, numpy array, [0, 1], low-resolution image in SR
            pch_size, stride: patch setting
            sf: scale factor in image super-resolution
        '''
        assert stride <= pch_size
        self.stride = stride
        self.pch_size = pch_size
        self.sf = sf

        if im.ndim == 2:
            im = im[:, :, None]

        height, width, chn = im.shape
        self.height_starts_list = self.extract_starts(height)
        self.width_starts_list = self.extract_starts(width)
        self.length = self.__len__()
        self.num_pchs = 0

        self.im_ori = im
        self.im_res = np.zeros([height*sf, width*sf, chn], dtype=im.dtype)
        self.pixel_count = np.zeros([height*sf, width*sf, chn], dtype=im.dtype)

    def extract_starts(self, length):
        starts = list(range(0, length, self.stride))
        if starts[-1] + self.pch_size > length:
            starts[-1] = length - self.pch_size
        return starts

    def __len__(self):
        return len(self.height_starts_list) * len(self.width_starts_list)

    def __iter__(self):
        return self

    def __next__(self):
        if self.num_pchs < self.length:
            w_start_idx = self.num_pchs // len(self.height_starts_list)
            w_start = self.width_starts_list[w_start_idx] * self.sf
            w_end = w_start + self.pch_size * self.sf

            h_start_idx = self.num_pchs % len(self.height_starts_list)
            h_start = self.height_starts_list[h_start_idx] * self.sf
            h_end = h_start + self.pch_size * self.sf

            pch = self.im_ori[h_start:h_end, w_start:w_end,]
            self.w_start, self.w_end = w_start, w_end
            self.h_start, self.h_end = h_start, h_end

            self.num_pchs += 1
        else:
            raise StopIteration(0)

        return pch, (h_start, h_end, w_start, w_end)

    def update(self, pch_res, index_infos):
        '''
        Input:
            pch_res: pch_size x pch_size x 3, [0,1]
            index_infos: (h_start, h_end, w_start, w_end)
        '''
        if index_infos is None:
            w_start, w_end = self.w_start, self.w_end
            h_start, h_end = self.h_start, self.h_end
        else:
            h_start, h_end, w_start, w_end = index_infos

        self.im_res[h_start:h_end, w_start:w_end] += pch_res
        self.pixel_count[h_start:h_end, w_start:w_end] += 1

    def gather(self):
        assert np.all(self.pixel_count != 0)
        return self.im_res / self.pixel_count

class ImageSpliterTh:
    def __init__(self, im, pch_size, stride, sf=1, extra_bs=1, weight_type='Gaussian'):
        '''
        Input:
            im: n x c x h x w, torch tensor, float, low-resolution image in SR
            pch_size, stride: patch setting
            sf: scale factor in image super-resolution
            pch_bs: aggregate pchs to processing, only used when inputing single image
        '''
        assert weight_type in ['Gaussian', 'ones']
        self.weight_type = weight_type
        assert stride <= pch_size
        self.stride = stride
        self.pch_size = pch_size
        self.sf = sf
        self.extra_bs = extra_bs

        bs, chn, height, width= im.shape
        self.true_bs = bs

        self.height_starts_list = self.extract_starts(height)
        self.width_starts_list = self.extract_starts(width)
        self.starts_list = []
        for ii in self.height_starts_list:
            for jj in self.width_starts_list:
                self.starts_list.append([ii, jj])

        self.length = self.__len__()
        self.count_pchs = 0

        self.im_ori = im
        self.dtype = torch.float64
        self.im_res = torch.zeros([bs, chn, height*sf, width*sf], dtype=self.dtype, device=im.device)
        self.pixel_count = torch.zeros([bs, chn, height*sf, width*sf], dtype=self.dtype, device=im.device)

    def extract_starts(self, length):
        if length <= self.pch_size:
            starts = [0,]
        else:
            starts = list(range(0, length, self.stride))
            for ii in range(len(starts)):
                if starts[ii] + self.pch_size > length:
                    starts[ii] = length - self.pch_size
            starts = sorted(set(starts), key=starts.index)
        return starts

    def __len__(self):
        return len(self.height_starts_list) * len(self.width_starts_list)

    def __iter__(self):
        return self

    def __next__(self):
        if self.count_pchs < self.length:
            index_infos = []
            current_starts_list = self.starts_list[self.count_pchs:self.count_pchs+self.extra_bs]
            for ii, (h_start, w_start) in enumerate(current_starts_list):
                w_end = w_start + self.pch_size
                h_end = h_start + self.pch_size
                current_pch = self.im_ori[:, :, h_start:h_end, w_start:w_end]
                if ii == 0:
                    pch =  current_pch
                else:
                    pch = torch.cat([pch, current_pch], dim=0)

                h_start *= self.sf
                h_end *= self.sf
                w_start *= self.sf
                w_end *= self.sf
                index_infos.append([h_start, h_end, w_start, w_end])

            self.count_pchs += len(current_starts_list)
        else:
            raise StopIteration()

        return pch, index_infos

    def update(self, pch_res, index_infos):
        '''
        Input:
            pch_res: (n*extra_bs) x c x pch_size x pch_size, float
            index_infos: [(h_start, h_end, w_start, w_end),]
        '''
        assert pch_res.shape[0] % self.true_bs == 0
        pch_list = torch.split(pch_res, self.true_bs, dim=0)
        assert len(pch_list) == len(index_infos)
        for ii, (h_start, h_end, w_start, w_end) in enumerate(index_infos):
            current_pch = pch_list[ii].type(self.dtype)
            current_weight = self.get_weight(current_pch.shape[-2], current_pch.shape[-1])
            self.im_res[:, :, h_start:h_end, w_start:w_end] +=  current_pch * current_weight
            self.pixel_count[:, :, h_start:h_end, w_start:w_end] += current_weight

    @staticmethod
    def generate_kernel_1d(ksize):
        sigma = 0.3 * ((ksize - 1) * 0.5 - 1) + 0.8  # opencv default setting
        if ksize % 2 == 0:
            kernel = cv2.getGaussianKernel(ksize=ksize+1, sigma=sigma, ktype=cv2.CV_64F)
            kernel = kernel[1:, ]
        else:
            kernel = cv2.getGaussianKernel(ksize=ksize, sigma=sigma, ktype=cv2.CV_64F)

        return kernel

    def get_weight(self, height, width):
        if self.weight_type == 'ones':
            kernel = torch.ones(1, 1, height, width)
        elif self.weight_type == 'Gaussian':
            kernel_h = self.generate_kernel_1d(height).reshape(-1, 1)
            kernel_w = self.generate_kernel_1d(width).reshape(1, -1)
            kernel = np.matmul(kernel_h, kernel_w)
            kernel = torch.from_numpy(kernel).unsqueeze(0).unsqueeze(0) # 1 x 1 x pch_size x pch_size
        else:
            raise ValueError(f"Unsupported weight type: {self.weight_type}")

        return kernel.to(dtype=self.dtype, device=self.im_ori.device)

    def gather(self):
        assert torch.all(self.pixel_count != 0)
        return self.im_res.div(self.pixel_count)

# ----------------------Patch Cliping----------------------------
class Clamper:
    def __init__(self, min_max=(-1, 1)):
        self.min_bound, self.max_bound = min_max[0], min_max[1]

    def __call__(self, im):
        if isinstance(im, np.ndarray):
            return np.clip(im, a_min=self.min_bound, a_max=self.max_bound)
        elif isinstance(im, torch.Tensor):
            return torch.clamp(im, min=self.min_bound, max=self.max_bound)
        else:
            raise TypeError(f'ndarray or Tensor expected, got {type(im)}')

# ----------------------Interpolation----------------------------
class Bicubic:
    def __init__(self, scale=None, out_shape=None, activate_matlab=True, resize_back=False):
        self.scale = scale
        self.activate_matlab = activate_matlab
        self.out_shape = out_shape
        self.resize_back = resize_back

    def __call__(self, im):
        if self.activate_matlab:
            out = imresize_np(im, scale=self.scale)
            if self.resize_back:
                out = imresize_np(out, scale=1/self.scale)
        else:
            out = cv2.resize(
                    im,
                    dsize=self.out_shape,
                    fx=self.scale,
                    fy=self.scale,
                    interpolation=cv2.INTER_CUBIC,
                    )
            if self.resize_back:
                out = cv2.resize(
                        out,
                        dsize=self.out_shape,
                        fx=1/self.scale,
                        fy=1/self.scale,
                        interpolation=cv2.INTER_CUBIC,
                        )
        return out

class SmallestMaxSize:
    def __init__(self, max_size, pass_resize=False, interpolation=None):
        self.pass_resize = pass_resize
        self.max_size = max_size
        self.interpolation = interpolation
        self.str2mode = {
                'nearest': cv2.INTER_NEAREST_EXACT,
                'bilinear': cv2.INTER_LINEAR,
                'bicubic': cv2.INTER_CUBIC
                }
        if self.interpolation is not None:
            assert interpolation in self.str2mode, f"Not supported interpolation mode: {interpolation}"

    def get_interpolation(self, size):
        if self.interpolation is None:
            if size < self.max_size:   # upsampling
                interpolation = cv2.INTER_CUBIC
            else:                      # downsampling
                interpolation = cv2.INTER_AREA
        else:
            interpolation = self.str2mode[self.interpolation]

        return interpolation

    def __call__(self, im):
        h, w = im.shape[:2]
        if self.pass_resize or min(h, w) == self.max_size:
            out = im
        else:
            if h < w:
                dsize = (int(self.max_size * w / h), self.max_size)
                out = cv2.resize(im, dsize=dsize, interpolation=self.get_interpolation(h))
            else:
                dsize = (self.max_size, int(self.max_size * h / w))
                out = cv2.resize(im, dsize=dsize, interpolation=self.get_interpolation(w))
            if out.dtype == np.uint8:
                out = np.clip(out, 0, 255)
            else:
                out = np.clip(out, 0, 1.0)

        return out

# ----------------------augmentation----------------------------
class SpatialAug:
    def __init__(self, pass_aug, only_hflip=False, only_vflip=False, only_hvflip=False):
        self.only_hflip = only_hflip
        self.only_vflip = only_vflip
        self.only_hvflip = only_hvflip
        self.pass_aug = pass_aug

    def __call__(self, im, flag=None):
        if self.pass_aug:
            return im

        if flag is None:
            if self.only_hflip:
                flag = random.choice([0, 5])
            elif self.only_vflip:
                flag = random.choice([0, 1])
            elif self.only_hvflip:
                flag = random.choice([0, 1, 5])
            else:
                flag = random.randint(0, 7)

        if isinstance(im, list) or isinstance(im, tuple):
            out = []
            for current_im in im:
                out.append(data_aug_np(current_im, flag))
        else:
            out = data_aug_np(im, flag)
        return out

if __name__ == '__main__':
    im = np.random.randn(64, 64, 3).astype(np.float32)

    grad1 = imgrad(im)['grad']
    grad2 = imgrad_fft(im)['grad']

    error = np.abs(grad1 -grad2).max()
    mean_error = np.abs(grad1 -grad2).mean()
    print('The largest error is {:.2e}'.format(error))
    print('The mean error is {:.2e}'.format(mean_error))