Spaces:
Running
on
Zero
Running
on
Zero
File size: 15,243 Bytes
bfa59ab |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 |
# Copyright 2024 ETH Zurich Computer Vision Lab and The HuggingFace Team. All rights reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
import math
from dataclasses import dataclass
from typing import Optional, Tuple, Union
import numpy as np
import torch
from ..configuration_utils import ConfigMixin, register_to_config
from ..utils import BaseOutput
from ..utils.torch_utils import randn_tensor
from .scheduling_utils import SchedulerMixin
@dataclass
class RePaintSchedulerOutput(BaseOutput):
"""
Output class for the scheduler's step function output.
Args:
prev_sample (`torch.Tensor` of shape `(batch_size, num_channels, height, width)` for images):
Computed sample (x_{t-1}) of previous timestep. `prev_sample` should be used as next model input in the
denoising loop.
pred_original_sample (`torch.Tensor` of shape `(batch_size, num_channels, height, width)` for images):
The predicted denoised sample (x_{0}) based on the model output from
the current timestep. `pred_original_sample` can be used to preview progress or for guidance.
"""
prev_sample: torch.Tensor
pred_original_sample: torch.Tensor
# Copied from diffusers.schedulers.scheduling_ddpm.betas_for_alpha_bar
def betas_for_alpha_bar(
num_diffusion_timesteps,
max_beta=0.999,
alpha_transform_type="cosine",
):
"""
Create a beta schedule that discretizes the given alpha_t_bar function, which defines the cumulative product of
(1-beta) over time from t = [0,1].
Contains a function alpha_bar that takes an argument t and transforms it to the cumulative product of (1-beta) up
to that part of the diffusion process.
Args:
num_diffusion_timesteps (`int`): the number of betas to produce.
max_beta (`float`): the maximum beta to use; use values lower than 1 to
prevent singularities.
alpha_transform_type (`str`, *optional*, default to `cosine`): the type of noise schedule for alpha_bar.
Choose from `cosine` or `exp`
Returns:
betas (`np.ndarray`): the betas used by the scheduler to step the model outputs
"""
if alpha_transform_type == "cosine":
def alpha_bar_fn(t):
return math.cos((t + 0.008) / 1.008 * math.pi / 2) ** 2
elif alpha_transform_type == "exp":
def alpha_bar_fn(t):
return math.exp(t * -12.0)
else:
raise ValueError(f"Unsupported alpha_transform_type: {alpha_transform_type}")
betas = []
for i in range(num_diffusion_timesteps):
t1 = i / num_diffusion_timesteps
t2 = (i + 1) / num_diffusion_timesteps
betas.append(min(1 - alpha_bar_fn(t2) / alpha_bar_fn(t1), max_beta))
return torch.tensor(betas, dtype=torch.float32)
class RePaintScheduler(SchedulerMixin, ConfigMixin):
"""
`RePaintScheduler` is a scheduler for DDPM inpainting inside a given mask.
This model inherits from [`SchedulerMixin`] and [`ConfigMixin`]. Check the superclass documentation for the generic
methods the library implements for all schedulers such as loading and saving.
Args:
num_train_timesteps (`int`, defaults to 1000):
The number of diffusion steps to train the model.
beta_start (`float`, defaults to 0.0001):
The starting `beta` value of inference.
beta_end (`float`, defaults to 0.02):
The final `beta` value.
beta_schedule (`str`, defaults to `"linear"`):
The beta schedule, a mapping from a beta range to a sequence of betas for stepping the model. Choose from
`linear`, `scaled_linear`, `squaredcos_cap_v2`, or `sigmoid`.
eta (`float`):
The weight of noise for added noise in diffusion step. If its value is between 0.0 and 1.0 it corresponds
to the DDIM scheduler, and if its value is between -0.0 and 1.0 it corresponds to the DDPM scheduler.
trained_betas (`np.ndarray`, *optional*):
Pass an array of betas directly to the constructor to bypass `beta_start` and `beta_end`.
clip_sample (`bool`, defaults to `True`):
Clip the predicted sample between -1 and 1 for numerical stability.
"""
order = 1
@register_to_config
def __init__(
self,
num_train_timesteps: int = 1000,
beta_start: float = 0.0001,
beta_end: float = 0.02,
beta_schedule: str = "linear",
eta: float = 0.0,
trained_betas: Optional[np.ndarray] = None,
clip_sample: bool = True,
):
if trained_betas is not None:
self.betas = torch.from_numpy(trained_betas)
elif beta_schedule == "linear":
self.betas = torch.linspace(beta_start, beta_end, num_train_timesteps, dtype=torch.float32)
elif beta_schedule == "scaled_linear":
# this schedule is very specific to the latent diffusion model.
self.betas = torch.linspace(beta_start**0.5, beta_end**0.5, num_train_timesteps, dtype=torch.float32) ** 2
elif beta_schedule == "squaredcos_cap_v2":
# Glide cosine schedule
self.betas = betas_for_alpha_bar(num_train_timesteps)
elif beta_schedule == "sigmoid":
# GeoDiff sigmoid schedule
betas = torch.linspace(-6, 6, num_train_timesteps)
self.betas = torch.sigmoid(betas) * (beta_end - beta_start) + beta_start
else:
raise NotImplementedError(f"{beta_schedule} is not implemented for {self.__class__}")
self.alphas = 1.0 - self.betas
self.alphas_cumprod = torch.cumprod(self.alphas, dim=0)
self.one = torch.tensor(1.0)
self.final_alpha_cumprod = torch.tensor(1.0)
# standard deviation of the initial noise distribution
self.init_noise_sigma = 1.0
# setable values
self.num_inference_steps = None
self.timesteps = torch.from_numpy(np.arange(0, num_train_timesteps)[::-1].copy())
self.eta = eta
def scale_model_input(self, sample: torch.Tensor, timestep: Optional[int] = None) -> torch.Tensor:
"""
Ensures interchangeability with schedulers that need to scale the denoising model input depending on the
current timestep.
Args:
sample (`torch.Tensor`):
The input sample.
timestep (`int`, *optional*):
The current timestep in the diffusion chain.
Returns:
`torch.Tensor`:
A scaled input sample.
"""
return sample
def set_timesteps(
self,
num_inference_steps: int,
jump_length: int = 10,
jump_n_sample: int = 10,
device: Union[str, torch.device] = None,
):
"""
Sets the discrete timesteps used for the diffusion chain (to be run before inference).
Args:
num_inference_steps (`int`):
The number of diffusion steps used when generating samples with a pre-trained model. If used,
`timesteps` must be `None`.
jump_length (`int`, defaults to 10):
The number of steps taken forward in time before going backward in time for a single jump (“j” in
RePaint paper). Take a look at Figure 9 and 10 in the paper.
jump_n_sample (`int`, defaults to 10):
The number of times to make a forward time jump for a given chosen time sample. Take a look at Figure 9
and 10 in the paper.
device (`str` or `torch.device`, *optional*):
The device to which the timesteps should be moved to. If `None`, the timesteps are not moved.
"""
num_inference_steps = min(self.config.num_train_timesteps, num_inference_steps)
self.num_inference_steps = num_inference_steps
timesteps = []
jumps = {}
for j in range(0, num_inference_steps - jump_length, jump_length):
jumps[j] = jump_n_sample - 1
t = num_inference_steps
while t >= 1:
t = t - 1
timesteps.append(t)
if jumps.get(t, 0) > 0:
jumps[t] = jumps[t] - 1
for _ in range(jump_length):
t = t + 1
timesteps.append(t)
timesteps = np.array(timesteps) * (self.config.num_train_timesteps // self.num_inference_steps)
self.timesteps = torch.from_numpy(timesteps).to(device)
def _get_variance(self, t):
prev_timestep = t - self.config.num_train_timesteps // self.num_inference_steps
alpha_prod_t = self.alphas_cumprod[t]
alpha_prod_t_prev = self.alphas_cumprod[prev_timestep] if prev_timestep >= 0 else self.final_alpha_cumprod
beta_prod_t = 1 - alpha_prod_t
beta_prod_t_prev = 1 - alpha_prod_t_prev
# For t > 0, compute predicted variance βt (see formula (6) and (7) from
# https://arxiv.org/pdf/2006.11239.pdf) and sample from it to get
# previous sample x_{t-1} ~ N(pred_prev_sample, variance) == add
# variance to pred_sample
# Is equivalent to formula (16) in https://arxiv.org/pdf/2010.02502.pdf
# without eta.
# variance = (1 - alpha_prod_t_prev) / (1 - alpha_prod_t) * self.betas[t]
variance = (beta_prod_t_prev / beta_prod_t) * (1 - alpha_prod_t / alpha_prod_t_prev)
return variance
def step(
self,
model_output: torch.Tensor,
timestep: int,
sample: torch.Tensor,
original_image: torch.Tensor,
mask: torch.Tensor,
generator: Optional[torch.Generator] = None,
return_dict: bool = True,
) -> Union[RePaintSchedulerOutput, Tuple]:
"""
Predict the sample from the previous timestep by reversing the SDE. This function propagates the diffusion
process from the learned model outputs (most often the predicted noise).
Args:
model_output (`torch.Tensor`):
The direct output from learned diffusion model.
timestep (`int`):
The current discrete timestep in the diffusion chain.
sample (`torch.Tensor`):
A current instance of a sample created by the diffusion process.
original_image (`torch.Tensor`):
The original image to inpaint on.
mask (`torch.Tensor`):
The mask where a value of 0.0 indicates which part of the original image to inpaint.
generator (`torch.Generator`, *optional*):
A random number generator.
return_dict (`bool`, *optional*, defaults to `True`):
Whether or not to return a [`~schedulers.scheduling_repaint.RePaintSchedulerOutput`] or `tuple`.
Returns:
[`~schedulers.scheduling_repaint.RePaintSchedulerOutput`] or `tuple`:
If return_dict is `True`, [`~schedulers.scheduling_repaint.RePaintSchedulerOutput`] is returned,
otherwise a tuple is returned where the first element is the sample tensor.
"""
t = timestep
prev_timestep = timestep - self.config.num_train_timesteps // self.num_inference_steps
# 1. compute alphas, betas
alpha_prod_t = self.alphas_cumprod[t]
alpha_prod_t_prev = self.alphas_cumprod[prev_timestep] if prev_timestep >= 0 else self.final_alpha_cumprod
beta_prod_t = 1 - alpha_prod_t
# 2. compute predicted original sample from predicted noise also called
# "predicted x_0" of formula (15) from https://arxiv.org/pdf/2006.11239.pdf
pred_original_sample = (sample - beta_prod_t**0.5 * model_output) / alpha_prod_t**0.5
# 3. Clip "predicted x_0"
if self.config.clip_sample:
pred_original_sample = torch.clamp(pred_original_sample, -1, 1)
# We choose to follow RePaint Algorithm 1 to get x_{t-1}, however we
# substitute formula (7) in the algorithm coming from DDPM paper
# (formula (4) Algorithm 2 - Sampling) with formula (12) from DDIM paper.
# DDIM schedule gives the same results as DDPM with eta = 1.0
# Noise is being reused in 7. and 8., but no impact on quality has
# been observed.
# 5. Add noise
device = model_output.device
noise = randn_tensor(model_output.shape, generator=generator, device=device, dtype=model_output.dtype)
std_dev_t = self.eta * self._get_variance(timestep) ** 0.5
variance = 0
if t > 0 and self.eta > 0:
variance = std_dev_t * noise
# 6. compute "direction pointing to x_t" of formula (12)
# from https://arxiv.org/pdf/2010.02502.pdf
pred_sample_direction = (1 - alpha_prod_t_prev - std_dev_t**2) ** 0.5 * model_output
# 7. compute x_{t-1} of formula (12) from https://arxiv.org/pdf/2010.02502.pdf
prev_unknown_part = alpha_prod_t_prev**0.5 * pred_original_sample + pred_sample_direction + variance
# 8. Algorithm 1 Line 5 https://arxiv.org/pdf/2201.09865.pdf
prev_known_part = (alpha_prod_t_prev**0.5) * original_image + ((1 - alpha_prod_t_prev) ** 0.5) * noise
# 9. Algorithm 1 Line 8 https://arxiv.org/pdf/2201.09865.pdf
pred_prev_sample = mask * prev_known_part + (1.0 - mask) * prev_unknown_part
if not return_dict:
return (
pred_prev_sample,
pred_original_sample,
)
return RePaintSchedulerOutput(prev_sample=pred_prev_sample, pred_original_sample=pred_original_sample)
def undo_step(self, sample, timestep, generator=None):
n = self.config.num_train_timesteps // self.num_inference_steps
for i in range(n):
beta = self.betas[timestep + i]
if sample.device.type == "mps":
# randn does not work reproducibly on mps
noise = randn_tensor(sample.shape, dtype=sample.dtype, generator=generator)
noise = noise.to(sample.device)
else:
noise = randn_tensor(sample.shape, generator=generator, device=sample.device, dtype=sample.dtype)
# 10. Algorithm 1 Line 10 https://arxiv.org/pdf/2201.09865.pdf
sample = (1 - beta) ** 0.5 * sample + beta**0.5 * noise
return sample
def add_noise(
self,
original_samples: torch.Tensor,
noise: torch.Tensor,
timesteps: torch.IntTensor,
) -> torch.Tensor:
raise NotImplementedError("Use `DDPMScheduler.add_noise()` to train for sampling with RePaint.")
def __len__(self):
return self.config.num_train_timesteps
|