File size: 28,201 Bytes
06f26d7
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
import cv2
import math
import numpy as np
import random
import torch
from scipy import special
from scipy.stats import multivariate_normal
from torchvision.transforms.functional_tensor import rgb_to_grayscale

# -------------------------------------------------------------------- #
# --------------------------- blur kernels --------------------------- #
# -------------------------------------------------------------------- #


# --------------------------- util functions --------------------------- #
def sigma_matrix2(sig_x, sig_y, theta):
    """Calculate the rotated sigma matrix (two dimensional matrix).

    Args:
        sig_x (float):
        sig_y (float):
        theta (float): Radian measurement.

    Returns:
        ndarray: Rotated sigma matrix.
    """
    d_matrix = np.array([[sig_x**2, 0], [0, sig_y**2]])
    u_matrix = np.array([[np.cos(theta), -np.sin(theta)], [np.sin(theta), np.cos(theta)]])
    return np.dot(u_matrix, np.dot(d_matrix, u_matrix.T))


def mesh_grid(kernel_size):
    """Generate the mesh grid, centering at zero.

    Args:
        kernel_size (int):

    Returns:
        xy (ndarray): with the shape (kernel_size, kernel_size, 2)
        xx (ndarray): with the shape (kernel_size, kernel_size)
        yy (ndarray): with the shape (kernel_size, kernel_size)
    """
    ax = np.arange(-kernel_size // 2 + 1., kernel_size // 2 + 1.)
    xx, yy = np.meshgrid(ax, ax)
    xy = np.hstack((xx.reshape((kernel_size * kernel_size, 1)), yy.reshape(kernel_size * kernel_size,
                                                                           1))).reshape(kernel_size, kernel_size, 2)
    return xy, xx, yy


def pdf2(sigma_matrix, grid):
    """Calculate PDF of the bivariate Gaussian distribution.

    Args:
        sigma_matrix (ndarray): with the shape (2, 2)
        grid (ndarray): generated by :func:`mesh_grid`,
            with the shape (K, K, 2), K is the kernel size.

    Returns:
        kernel (ndarrray): un-normalized kernel.
    """
    inverse_sigma = np.linalg.inv(sigma_matrix)
    kernel = np.exp(-0.5 * np.sum(np.dot(grid, inverse_sigma) * grid, 2))
    return kernel


def cdf2(d_matrix, grid):
    """Calculate the CDF of the standard bivariate Gaussian distribution.
        Used in skewed Gaussian distribution.

    Args:
        d_matrix (ndarrasy): skew matrix.
        grid (ndarray): generated by :func:`mesh_grid`,
            with the shape (K, K, 2), K is the kernel size.

    Returns:
        cdf (ndarray): skewed cdf.
    """
    rv = multivariate_normal([0, 0], [[1, 0], [0, 1]])
    grid = np.dot(grid, d_matrix)
    cdf = rv.cdf(grid)
    return cdf


def bivariate_Gaussian(kernel_size, sig_x, sig_y, theta, grid=None, isotropic=True):
    """Generate a bivariate isotropic or anisotropic Gaussian kernel.

    In the isotropic mode, only `sig_x` is used. `sig_y` and `theta` is ignored.

    Args:
        kernel_size (int):
        sig_x (float):
        sig_y (float):
        theta (float): Radian measurement.
        grid (ndarray, optional): generated by :func:`mesh_grid`,
            with the shape (K, K, 2), K is the kernel size. Default: None
        isotropic (bool):

    Returns:
        kernel (ndarray): normalized kernel.
    """
    if grid is None:
        grid, _, _ = mesh_grid(kernel_size)
    if isotropic:
        sigma_matrix = np.array([[sig_x**2, 0], [0, sig_x**2]])
    else:
        sigma_matrix = sigma_matrix2(sig_x, sig_y, theta)
    kernel = pdf2(sigma_matrix, grid)
    kernel = kernel / np.sum(kernel)
    return kernel


def bivariate_generalized_Gaussian(kernel_size, sig_x, sig_y, theta, beta, grid=None, isotropic=True):
    """Generate a bivariate generalized Gaussian kernel.

    ``Paper: Parameter Estimation For Multivariate Generalized Gaussian Distributions``

    In the isotropic mode, only `sig_x` is used. `sig_y` and `theta` is ignored.

    Args:
        kernel_size (int):
        sig_x (float):
        sig_y (float):
        theta (float): Radian measurement.
        beta (float): shape parameter, beta = 1 is the normal distribution.
        grid (ndarray, optional): generated by :func:`mesh_grid`,
            with the shape (K, K, 2), K is the kernel size. Default: None

    Returns:
        kernel (ndarray): normalized kernel.
    """
    if grid is None:
        grid, _, _ = mesh_grid(kernel_size)
    if isotropic:
        sigma_matrix = np.array([[sig_x**2, 0], [0, sig_x**2]])
    else:
        sigma_matrix = sigma_matrix2(sig_x, sig_y, theta)
    inverse_sigma = np.linalg.inv(sigma_matrix)
    kernel = np.exp(-0.5 * np.power(np.sum(np.dot(grid, inverse_sigma) * grid, 2), beta))
    kernel = kernel / np.sum(kernel)
    return kernel


def bivariate_plateau(kernel_size, sig_x, sig_y, theta, beta, grid=None, isotropic=True):
    """Generate a plateau-like anisotropic kernel.

    1 / (1+x^(beta))

    Reference: https://stats.stackexchange.com/questions/203629/is-there-a-plateau-shaped-distribution

    In the isotropic mode, only `sig_x` is used. `sig_y` and `theta` is ignored.

    Args:
        kernel_size (int):
        sig_x (float):
        sig_y (float):
        theta (float): Radian measurement.
        beta (float): shape parameter, beta = 1 is the normal distribution.
        grid (ndarray, optional): generated by :func:`mesh_grid`,
            with the shape (K, K, 2), K is the kernel size. Default: None

    Returns:
        kernel (ndarray): normalized kernel.
    """
    if grid is None:
        grid, _, _ = mesh_grid(kernel_size)
    if isotropic:
        sigma_matrix = np.array([[sig_x**2, 0], [0, sig_x**2]])
    else:
        sigma_matrix = sigma_matrix2(sig_x, sig_y, theta)
    inverse_sigma = np.linalg.inv(sigma_matrix)
    kernel = np.reciprocal(np.power(np.sum(np.dot(grid, inverse_sigma) * grid, 2), beta) + 1)
    kernel = kernel / np.sum(kernel)
    return kernel


def random_bivariate_Gaussian(kernel_size,
                              sigma_x_range,
                              sigma_y_range,
                              rotation_range,
                              noise_range=None,
                              isotropic=True):
    """Randomly generate bivariate isotropic or anisotropic Gaussian kernels.

    In the isotropic mode, only `sigma_x_range` is used. `sigma_y_range` and `rotation_range` is ignored.

    Args:
        kernel_size (int):
        sigma_x_range (tuple): [0.6, 5]
        sigma_y_range (tuple): [0.6, 5]
        rotation range (tuple): [-math.pi, math.pi]
        noise_range(tuple, optional): multiplicative kernel noise,
            [0.75, 1.25]. Default: None

    Returns:
        kernel (ndarray):
    """
    assert kernel_size % 2 == 1, 'Kernel size must be an odd number.'
    assert sigma_x_range[0] < sigma_x_range[1], 'Wrong sigma_x_range.'
    sigma_x = np.random.uniform(sigma_x_range[0], sigma_x_range[1])
    if isotropic is False:
        assert sigma_y_range[0] < sigma_y_range[1], 'Wrong sigma_y_range.'
        assert rotation_range[0] < rotation_range[1], 'Wrong rotation_range.'
        sigma_y = np.random.uniform(sigma_y_range[0], sigma_y_range[1])
        rotation = np.random.uniform(rotation_range[0], rotation_range[1])
    else:
        sigma_y = sigma_x
        rotation = 0

    kernel = bivariate_Gaussian(kernel_size, sigma_x, sigma_y, rotation, isotropic=isotropic)

    # add multiplicative noise
    if noise_range is not None:
        assert noise_range[0] < noise_range[1], 'Wrong noise range.'
        noise = np.random.uniform(noise_range[0], noise_range[1], size=kernel.shape)
        kernel = kernel * noise
    kernel = kernel / np.sum(kernel)
    return kernel


def random_bivariate_generalized_Gaussian(kernel_size,
                                          sigma_x_range,
                                          sigma_y_range,
                                          rotation_range,
                                          beta_range,
                                          noise_range=None,
                                          isotropic=True):
    """Randomly generate bivariate generalized Gaussian kernels.

    In the isotropic mode, only `sigma_x_range` is used. `sigma_y_range` and `rotation_range` is ignored.

    Args:
        kernel_size (int):
        sigma_x_range (tuple): [0.6, 5]
        sigma_y_range (tuple): [0.6, 5]
        rotation range (tuple): [-math.pi, math.pi]
        beta_range (tuple): [0.5, 8]
        noise_range(tuple, optional): multiplicative kernel noise,
            [0.75, 1.25]. Default: None

    Returns:
        kernel (ndarray):
    """
    assert kernel_size % 2 == 1, 'Kernel size must be an odd number.'
    assert sigma_x_range[0] < sigma_x_range[1], 'Wrong sigma_x_range.'
    sigma_x = np.random.uniform(sigma_x_range[0], sigma_x_range[1])
    if isotropic is False:
        assert sigma_y_range[0] < sigma_y_range[1], 'Wrong sigma_y_range.'
        assert rotation_range[0] < rotation_range[1], 'Wrong rotation_range.'
        sigma_y = np.random.uniform(sigma_y_range[0], sigma_y_range[1])
        rotation = np.random.uniform(rotation_range[0], rotation_range[1])
    else:
        sigma_y = sigma_x
        rotation = 0

    # assume beta_range[0] < 1 < beta_range[1]
    if np.random.uniform() < 0.5:
        beta = np.random.uniform(beta_range[0], 1)
    else:
        beta = np.random.uniform(1, beta_range[1])

    kernel = bivariate_generalized_Gaussian(kernel_size, sigma_x, sigma_y, rotation, beta, isotropic=isotropic)

    # add multiplicative noise
    if noise_range is not None:
        assert noise_range[0] < noise_range[1], 'Wrong noise range.'
        noise = np.random.uniform(noise_range[0], noise_range[1], size=kernel.shape)
        kernel = kernel * noise
    kernel = kernel / np.sum(kernel)
    return kernel


def random_bivariate_plateau(kernel_size,
                             sigma_x_range,
                             sigma_y_range,
                             rotation_range,
                             beta_range,
                             noise_range=None,
                             isotropic=True):
    """Randomly generate bivariate plateau kernels.

    In the isotropic mode, only `sigma_x_range` is used. `sigma_y_range` and `rotation_range` is ignored.

    Args:
        kernel_size (int):
        sigma_x_range (tuple): [0.6, 5]
        sigma_y_range (tuple): [0.6, 5]
        rotation range (tuple): [-math.pi/2, math.pi/2]
        beta_range (tuple): [1, 4]
        noise_range(tuple, optional): multiplicative kernel noise,
            [0.75, 1.25]. Default: None

    Returns:
        kernel (ndarray):
    """
    assert kernel_size % 2 == 1, 'Kernel size must be an odd number.'
    assert sigma_x_range[0] < sigma_x_range[1], 'Wrong sigma_x_range.'
    sigma_x = np.random.uniform(sigma_x_range[0], sigma_x_range[1])
    if isotropic is False:
        assert sigma_y_range[0] < sigma_y_range[1], 'Wrong sigma_y_range.'
        assert rotation_range[0] < rotation_range[1], 'Wrong rotation_range.'
        sigma_y = np.random.uniform(sigma_y_range[0], sigma_y_range[1])
        rotation = np.random.uniform(rotation_range[0], rotation_range[1])
    else:
        sigma_y = sigma_x
        rotation = 0

    # TODO: this may be not proper
    if np.random.uniform() < 0.5:
        beta = np.random.uniform(beta_range[0], 1)
    else:
        beta = np.random.uniform(1, beta_range[1])

    kernel = bivariate_plateau(kernel_size, sigma_x, sigma_y, rotation, beta, isotropic=isotropic)
    # add multiplicative noise
    if noise_range is not None:
        assert noise_range[0] < noise_range[1], 'Wrong noise range.'
        noise = np.random.uniform(noise_range[0], noise_range[1], size=kernel.shape)
        kernel = kernel * noise
    kernel = kernel / np.sum(kernel)

    return kernel


def random_mixed_kernels(kernel_list,
                         kernel_prob,
                         kernel_size=21,
                         sigma_x_range=(0.6, 5),
                         sigma_y_range=(0.6, 5),
                         rotation_range=(-math.pi, math.pi),
                         betag_range=(0.5, 8),
                         betap_range=(0.5, 8),
                         noise_range=None):
    """Randomly generate mixed kernels.

    Args:
        kernel_list (tuple): a list name of kernel types,
            support ['iso', 'aniso', 'skew', 'generalized', 'plateau_iso',
            'plateau_aniso']
        kernel_prob (tuple): corresponding kernel probability for each
            kernel type
        kernel_size (int):
        sigma_x_range (tuple): [0.6, 5]
        sigma_y_range (tuple): [0.6, 5]
        rotation range (tuple): [-math.pi, math.pi]
        beta_range (tuple): [0.5, 8]
        noise_range(tuple, optional): multiplicative kernel noise,
            [0.75, 1.25]. Default: None

    Returns:
        kernel (ndarray):
    """
    kernel_type = random.choices(kernel_list, kernel_prob)[0]
    if kernel_type == 'iso':
        kernel = random_bivariate_Gaussian(
            kernel_size, sigma_x_range, sigma_y_range, rotation_range, noise_range=noise_range, isotropic=True)
    elif kernel_type == 'aniso':
        kernel = random_bivariate_Gaussian(
            kernel_size, sigma_x_range, sigma_y_range, rotation_range, noise_range=noise_range, isotropic=False)
    elif kernel_type == 'generalized_iso':
        kernel = random_bivariate_generalized_Gaussian(
            kernel_size,
            sigma_x_range,
            sigma_y_range,
            rotation_range,
            betag_range,
            noise_range=noise_range,
            isotropic=True)
    elif kernel_type == 'generalized_aniso':
        kernel = random_bivariate_generalized_Gaussian(
            kernel_size,
            sigma_x_range,
            sigma_y_range,
            rotation_range,
            betag_range,
            noise_range=noise_range,
            isotropic=False)
    elif kernel_type == 'plateau_iso':
        kernel = random_bivariate_plateau(
            kernel_size, sigma_x_range, sigma_y_range, rotation_range, betap_range, noise_range=None, isotropic=True)
    elif kernel_type == 'plateau_aniso':
        kernel = random_bivariate_plateau(
            kernel_size, sigma_x_range, sigma_y_range, rotation_range, betap_range, noise_range=None, isotropic=False)
    return kernel


np.seterr(divide='ignore', invalid='ignore')


def circular_lowpass_kernel(cutoff, kernel_size, pad_to=0):
    """2D sinc filter

    Reference: https://dsp.stackexchange.com/questions/58301/2-d-circularly-symmetric-low-pass-filter

    Args:
        cutoff (float): cutoff frequency in radians (pi is max)
        kernel_size (int): horizontal and vertical size, must be odd.
        pad_to (int): pad kernel size to desired size, must be odd or zero.
    """
    assert kernel_size % 2 == 1, 'Kernel size must be an odd number.'
    kernel = np.fromfunction(
        lambda x, y: cutoff * special.j1(cutoff * np.sqrt(
            (x - (kernel_size - 1) / 2)**2 + (y - (kernel_size - 1) / 2)**2)) / (2 * np.pi * np.sqrt(
                (x - (kernel_size - 1) / 2)**2 + (y - (kernel_size - 1) / 2)**2)), [kernel_size, kernel_size])
    kernel[(kernel_size - 1) // 2, (kernel_size - 1) // 2] = cutoff**2 / (4 * np.pi)
    kernel = kernel / np.sum(kernel)
    if pad_to > kernel_size:
        pad_size = (pad_to - kernel_size) // 2
        kernel = np.pad(kernel, ((pad_size, pad_size), (pad_size, pad_size)))
    return kernel


# ------------------------------------------------------------- #
# --------------------------- noise --------------------------- #
# ------------------------------------------------------------- #

# ----------------------- Gaussian Noise ----------------------- #


def generate_gaussian_noise(img, sigma=10, gray_noise=False):
    """Generate Gaussian noise.

    Args:
        img (Numpy array): Input image, shape (h, w, c), range [0, 1], float32.
        sigma (float): Noise scale (measured in range 255). Default: 10.

    Returns:
        (Numpy array): Returned noisy image, shape (h, w, c), range[0, 1],
            float32.
    """
    if gray_noise:
        noise = np.float32(np.random.randn(*(img.shape[0:2]))) * sigma / 255.
        noise = np.expand_dims(noise, axis=2).repeat(3, axis=2)
    else:
        noise = np.float32(np.random.randn(*(img.shape))) * sigma / 255.
    return noise


def add_gaussian_noise(img, sigma=10, clip=True, rounds=False, gray_noise=False):
    """Add Gaussian noise.

    Args:
        img (Numpy array): Input image, shape (h, w, c), range [0, 1], float32.
        sigma (float): Noise scale (measured in range 255). Default: 10.

    Returns:
        (Numpy array): Returned noisy image, shape (h, w, c), range[0, 1],
            float32.
    """
    noise = generate_gaussian_noise(img, sigma, gray_noise)
    out = img + noise
    if clip and rounds:
        out = np.clip((out * 255.0).round(), 0, 255) / 255.
    elif clip:
        out = np.clip(out, 0, 1)
    elif rounds:
        out = (out * 255.0).round() / 255.
    return out


def generate_gaussian_noise_pt(img, sigma=10, gray_noise=0):
    """Add Gaussian noise (PyTorch version).

    Args:
        img (Tensor): Shape (b, c, h, w), range[0, 1], float32.
        scale (float | Tensor): Noise scale. Default: 1.0.

    Returns:
        (Tensor): Returned noisy image, shape (b, c, h, w), range[0, 1],
            float32.
    """
    b, _, h, w = img.size()
    if not isinstance(sigma, (float, int)):
        sigma = sigma.view(img.size(0), 1, 1, 1)
    if isinstance(gray_noise, (float, int)):
        cal_gray_noise = gray_noise > 0
    else:
        gray_noise = gray_noise.view(b, 1, 1, 1)
        cal_gray_noise = torch.sum(gray_noise) > 0

    if cal_gray_noise:
        noise_gray = torch.randn(*img.size()[2:4], dtype=img.dtype, device=img.device) * sigma / 255.
        noise_gray = noise_gray.view(b, 1, h, w)

    # always calculate color noise
    noise = torch.randn(*img.size(), dtype=img.dtype, device=img.device) * sigma / 255.

    if cal_gray_noise:
        noise = noise * (1 - gray_noise) + noise_gray * gray_noise
    return noise


def add_gaussian_noise_pt(img, sigma=10, gray_noise=0, clip=True, rounds=False):
    """Add Gaussian noise (PyTorch version).

    Args:
        img (Tensor): Shape (b, c, h, w), range[0, 1], float32.
        scale (float | Tensor): Noise scale. Default: 1.0.

    Returns:
        (Tensor): Returned noisy image, shape (b, c, h, w), range[0, 1],
            float32.
    """
    noise = generate_gaussian_noise_pt(img, sigma, gray_noise)
    out = img + noise
    if clip and rounds:
        out = torch.clamp((out * 255.0).round(), 0, 255) / 255.
    elif clip:
        out = torch.clamp(out, 0, 1)
    elif rounds:
        out = (out * 255.0).round() / 255.
    return out


# ----------------------- Random Gaussian Noise ----------------------- #
def random_generate_gaussian_noise(img, sigma_range=(0, 10), gray_prob=0):
    sigma = np.random.uniform(sigma_range[0], sigma_range[1])
    if np.random.uniform() < gray_prob:
        gray_noise = True
    else:
        gray_noise = False
    return generate_gaussian_noise(img, sigma, gray_noise)


def random_add_gaussian_noise(img, sigma_range=(0, 1.0), gray_prob=0, clip=True, rounds=False):
    noise = random_generate_gaussian_noise(img, sigma_range, gray_prob)
    out = img + noise
    if clip and rounds:
        out = np.clip((out * 255.0).round(), 0, 255) / 255.
    elif clip:
        out = np.clip(out, 0, 1)
    elif rounds:
        out = (out * 255.0).round() / 255.
    return out


def random_generate_gaussian_noise_pt(img, sigma_range=(0, 10), gray_prob=0):
    sigma = torch.rand(
        img.size(0), dtype=img.dtype, device=img.device) * (sigma_range[1] - sigma_range[0]) + sigma_range[0]
    gray_noise = torch.rand(img.size(0), dtype=img.dtype, device=img.device)
    gray_noise = (gray_noise < gray_prob).float()
    return generate_gaussian_noise_pt(img, sigma, gray_noise)


def random_add_gaussian_noise_pt(img, sigma_range=(0, 1.0), gray_prob=0, clip=True, rounds=False):
    noise = random_generate_gaussian_noise_pt(img, sigma_range, gray_prob)
    out = img + noise
    if clip and rounds:
        out = torch.clamp((out * 255.0).round(), 0, 255) / 255.
    elif clip:
        out = torch.clamp(out, 0, 1)
    elif rounds:
        out = (out * 255.0).round() / 255.
    return out


# ----------------------- Poisson (Shot) Noise ----------------------- #


def generate_poisson_noise(img, scale=1.0, gray_noise=False):
    """Generate poisson noise.

    Reference: https://github.com/scikit-image/scikit-image/blob/main/skimage/util/noise.py#L37-L219

    Args:
        img (Numpy array): Input image, shape (h, w, c), range [0, 1], float32.
        scale (float): Noise scale. Default: 1.0.
        gray_noise (bool): Whether generate gray noise. Default: False.

    Returns:
        (Numpy array): Returned noisy image, shape (h, w, c), range[0, 1],
            float32.
    """
    if gray_noise:
        img = cv2.cvtColor(img, cv2.COLOR_BGR2GRAY)
    # round and clip image for counting vals correctly
    img = np.clip((img * 255.0).round(), 0, 255) / 255.
    vals = len(np.unique(img))
    vals = 2**np.ceil(np.log2(vals))
    out = np.float32(np.random.poisson(img * vals) / float(vals))
    noise = out - img
    if gray_noise:
        noise = np.repeat(noise[:, :, np.newaxis], 3, axis=2)
    return noise * scale


def add_poisson_noise(img, scale=1.0, clip=True, rounds=False, gray_noise=False):
    """Add poisson noise.

    Args:
        img (Numpy array): Input image, shape (h, w, c), range [0, 1], float32.
        scale (float): Noise scale. Default: 1.0.
        gray_noise (bool): Whether generate gray noise. Default: False.

    Returns:
        (Numpy array): Returned noisy image, shape (h, w, c), range[0, 1],
            float32.
    """
    noise = generate_poisson_noise(img, scale, gray_noise)
    out = img + noise
    if clip and rounds:
        out = np.clip((out * 255.0).round(), 0, 255) / 255.
    elif clip:
        out = np.clip(out, 0, 1)
    elif rounds:
        out = (out * 255.0).round() / 255.
    return out


def generate_poisson_noise_pt(img, scale=1.0, gray_noise=0):
    """Generate a batch of poisson noise (PyTorch version)

    Args:
        img (Tensor): Input image, shape (b, c, h, w), range [0, 1], float32.
        scale (float | Tensor): Noise scale. Number or Tensor with shape (b).
            Default: 1.0.
        gray_noise (float | Tensor): 0-1 number or Tensor with shape (b).
            0 for False, 1 for True. Default: 0.

    Returns:
        (Tensor): Returned noisy image, shape (b, c, h, w), range[0, 1],
            float32.
    """
    b, _, h, w = img.size()
    if isinstance(gray_noise, (float, int)):
        cal_gray_noise = gray_noise > 0
    else:
        gray_noise = gray_noise.view(b, 1, 1, 1)
        cal_gray_noise = torch.sum(gray_noise) > 0
    if cal_gray_noise:
        img_gray = rgb_to_grayscale(img, num_output_channels=1)
        # round and clip image for counting vals correctly
        img_gray = torch.clamp((img_gray * 255.0).round(), 0, 255) / 255.
        # use for-loop to get the unique values for each sample
        vals_list = [len(torch.unique(img_gray[i, :, :, :])) for i in range(b)]
        vals_list = [2**np.ceil(np.log2(vals)) for vals in vals_list]
        vals = img_gray.new_tensor(vals_list).view(b, 1, 1, 1)
        out = torch.poisson(img_gray * vals) / vals
        noise_gray = out - img_gray
        noise_gray = noise_gray.expand(b, 3, h, w)

    # always calculate color noise
    # round and clip image for counting vals correctly
    img = torch.clamp((img * 255.0).round(), 0, 255) / 255.
    # use for-loop to get the unique values for each sample
    vals_list = [len(torch.unique(img[i, :, :, :])) for i in range(b)]
    vals_list = [2**np.ceil(np.log2(vals)) for vals in vals_list]
    vals = img.new_tensor(vals_list).view(b, 1, 1, 1)
    out = torch.poisson(img * vals) / vals
    noise = out - img
    if cal_gray_noise:
        noise = noise * (1 - gray_noise) + noise_gray * gray_noise
    if not isinstance(scale, (float, int)):
        scale = scale.view(b, 1, 1, 1)
    return noise * scale


def add_poisson_noise_pt(img, scale=1.0, clip=True, rounds=False, gray_noise=0):
    """Add poisson noise to a batch of images (PyTorch version).

    Args:
        img (Tensor): Input image, shape (b, c, h, w), range [0, 1], float32.
        scale (float | Tensor): Noise scale. Number or Tensor with shape (b).
            Default: 1.0.
        gray_noise (float | Tensor): 0-1 number or Tensor with shape (b).
            0 for False, 1 for True. Default: 0.

    Returns:
        (Tensor): Returned noisy image, shape (b, c, h, w), range[0, 1],
            float32.
    """
    noise = generate_poisson_noise_pt(img, scale, gray_noise)
    out = img + noise
    if clip and rounds:
        out = torch.clamp((out * 255.0).round(), 0, 255) / 255.
    elif clip:
        out = torch.clamp(out, 0, 1)
    elif rounds:
        out = (out * 255.0).round() / 255.
    return out


# ----------------------- Random Poisson (Shot) Noise ----------------------- #


def random_generate_poisson_noise(img, scale_range=(0, 1.0), gray_prob=0):
    scale = np.random.uniform(scale_range[0], scale_range[1])
    if np.random.uniform() < gray_prob:
        gray_noise = True
    else:
        gray_noise = False
    return generate_poisson_noise(img, scale, gray_noise)


def random_add_poisson_noise(img, scale_range=(0, 1.0), gray_prob=0, clip=True, rounds=False):
    noise = random_generate_poisson_noise(img, scale_range, gray_prob)
    out = img + noise
    if clip and rounds:
        out = np.clip((out * 255.0).round(), 0, 255) / 255.
    elif clip:
        out = np.clip(out, 0, 1)
    elif rounds:
        out = (out * 255.0).round() / 255.
    return out


def random_generate_poisson_noise_pt(img, scale_range=(0, 1.0), gray_prob=0):
    scale = torch.rand(
        img.size(0), dtype=img.dtype, device=img.device) * (scale_range[1] - scale_range[0]) + scale_range[0]
    gray_noise = torch.rand(img.size(0), dtype=img.dtype, device=img.device)
    gray_noise = (gray_noise < gray_prob).float()
    return generate_poisson_noise_pt(img, scale, gray_noise)


def random_add_poisson_noise_pt(img, scale_range=(0, 1.0), gray_prob=0, clip=True, rounds=False):
    noise = random_generate_poisson_noise_pt(img, scale_range, gray_prob)
    out = img + noise
    if clip and rounds:
        out = torch.clamp((out * 255.0).round(), 0, 255) / 255.
    elif clip:
        out = torch.clamp(out, 0, 1)
    elif rounds:
        out = (out * 255.0).round() / 255.
    return out


# ------------------------------------------------------------------------ #
# --------------------------- JPEG compression --------------------------- #
# ------------------------------------------------------------------------ #


def add_jpg_compression(img, quality=90):
    """Add JPG compression artifacts.

    Args:
        img (Numpy array): Input image, shape (h, w, c), range [0, 1], float32.
        quality (float): JPG compression quality. 0 for lowest quality, 100 for
            best quality. Default: 90.

    Returns:
        (Numpy array): Returned image after JPG, shape (h, w, c), range[0, 1],
            float32.
    """
    img = np.clip(img, 0, 1)
    encode_param = [int(cv2.IMWRITE_JPEG_QUALITY), quality]
    _, encimg = cv2.imencode('.jpg', img * 255., encode_param)
    img = np.float32(cv2.imdecode(encimg, 1)) / 255.
    return img


def random_add_jpg_compression(img, quality_range=(90, 100)):
    """Randomly add JPG compression artifacts.

    Args:
        img (Numpy array): Input image, shape (h, w, c), range [0, 1], float32.
        quality_range (tuple[float] | list[float]): JPG compression quality
            range. 0 for lowest quality, 100 for best quality.
            Default: (90, 100).

    Returns:
        (Numpy array): Returned image after JPG, shape (h, w, c), range[0, 1],
            float32.
    """
    quality = np.random.uniform(quality_range[0], quality_range[1])
    return add_jpg_compression(img, quality)