File size: 53,920 Bytes
1a5d9a0
b6ac700
 
 
 
 
 
8077be2
b6ac700
8d120bf
b6ac700
 
 
 
 
 
 
a1da02d
18bb72f
b6ac700
 
 
77b92a2
b6ac700
 
 
 
 
 
 
 
 
 
 
 
 
3cd7d59
b6ac700
 
 
8077be2
 
 
 
b6ac700
4c650d7
3ab1530
8077be2
4c650d7
b6ac700
 
 
 
 
 
 
 
ed2c604
b6ac700
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
18bb72f
 
 
 
b6ac700
 
 
 
 
 
 
 
 
 
 
 
 
18bb72f
 
 
3cd7d59
 
18bb72f
 
 
 
6fc9a01
 
18bb72f
 
b6ac700
8077be2
b6ac700
a1da02d
6fc9a01
 
8077be2
6fc9a01
 
 
 
b6ac700
 
8077be2
b6ac700
 
a1da02d
6fc9a01
b6ac700
8031785
b6ac700
 
a1da02d
28514b1
6fc9a01
 
 
a1da02d
18bb72f
a1da02d
8077be2
3ab1530
b6ac700
 
8077be2
b6ac700
 
 
 
 
a1da02d
6fc9a01
 
b6ac700
8077be2
b6ac700
 
 
 
a1da02d
6fc9a01
a1da02d
b6ac700
 
8077be2
b6ac700
 
 
 
 
 
a1da02d
6fc9a01
b6ac700
 
 
 
 
 
 
 
 
 
a1da02d
 
28514b1
6fc9a01
 
 
a1da02d
18bb72f
a1da02d
8077be2
b6ac700
 
 
 
 
 
92bc446
b6ac700
 
 
92bc446
b6ac700
28514b1
 
b6ac700
92bc446
8077be2
3ab1530
b6ac700
 
 
 
 
92bc446
 
8077be2
 
 
92bc446
8077be2
92bc446
 
b6ac700
 
 
 
 
 
 
 
 
92bc446
b6ac700
 
 
 
 
 
 
 
 
92bc446
b6ac700
 
92bc446
b6ac700
 
 
 
 
 
 
 
 
 
92bc446
 
 
b6ac700
 
 
77b92a2
 
 
 
b0efdc6
 
b6ac700
 
 
 
b0efdc6
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
b6ac700
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
9428712
b6ac700
 
 
 
9428712
b6ac700
 
 
28514b1
 
 
 
 
b6ac700
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
aa33666
 
 
 
 
 
 
 
 
 
 
 
 
b6ac700
 
 
 
 
 
 
 
 
 
 
 
92bc446
b6ac700
92bc446
b6ac700
9b6dda4
 
b6ac700
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
92bc446
b6ac700
 
 
 
8077be2
b6ac700
 
 
8077be2
 
92bc446
 
 
 
8077be2
 
 
 
 
 
 
 
 
 
9b6dda4
8077be2
 
 
92bc446
 
9b6dda4
92bc446
8077be2
 
 
 
 
 
b6ac700
 
 
 
8077be2
3ab1530
 
 
 
 
b6ac700
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
18bb72f
 
 
 
b6ac700
 
 
 
05a2178
b6ac700
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
8077be2
 
 
 
 
 
 
 
 
 
b6ac700
 
8077be2
 
 
 
 
 
 
 
 
 
 
b6ac700
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
a1da02d
 
 
 
 
 
 
 
6fc9a01
 
 
a1da02d
6fc9a01
1a5d9a0
b6ac700
77b92a2
 
1a5d9a0
b6ac700
1a5d9a0
b6ac700
1a5d9a0
b6ac700
1a5d9a0
 
 
 
 
8077be2
 
 
 
 
 
6fc9a01
1a5d9a0
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
8077be2
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
6fc9a01
1a5d9a0
 
 
 
 
 
 
 
 
 
 
 
 
b6ac700
 
 
 
 
 
 
 
 
 
4c650d7
b6ac700
 
 
 
 
 
 
8077be2
b6ac700
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
4c650d7
 
 
 
 
9428712
 
 
b0efdc6
 
4c650d7
 
3cd7d59
 
 
 
 
 
 
 
b6ac700
 
 
 
 
77b92a2
 
 
 
 
 
 
 
 
8077be2
b6ac700
 
 
6250a98
b6ac700
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
from datetime import datetime
import json
import math
from typing import Iterator, Union
import argparse

from io import StringIO
import time
import os
import pathlib
import tempfile
import zipfile
import numpy as np

import torch

from src.config import VAD_INITIAL_PROMPT_MODE_VALUES, ApplicationConfig, VadInitialPromptMode
from src.diarization.diarization import Diarization
from src.diarization.diarizationContainer import DiarizationContainer
from src.hooks.progressListener import ProgressListener
from src.hooks.subTaskProgressListener import SubTaskProgressListener
from src.hooks.whisperProgressHook import create_progress_listener_handle
from src.languages import _TO_LANGUAGE_CODE, get_language_names, get_language_from_name, get_language_from_code
from src.modelCache import ModelCache
from src.prompts.jsonPromptStrategy import JsonPromptStrategy
from src.prompts.prependPromptStrategy import PrependPromptStrategy
from src.source import get_audio_source_collection
from src.vadParallel import ParallelContext, ParallelTranscription

# External programs
import ffmpeg

# UI
import gradio as gr

from src.download import ExceededMaximumDuration, download_url
from src.utils import optional_int, slugify, str2bool, write_srt, write_vtt
from src.vad import AbstractTranscription, NonSpeechStrategy, PeriodicTranscriptionConfig, TranscriptionConfig, VadPeriodicTranscription, VadSileroTranscription
from src.whisper.abstractWhisperContainer import AbstractWhisperContainer
from src.whisper.whisperFactory import create_whisper_container
from src.nllb.nllbModel import NllbModel
from src.nllb.nllbLangs import _TO_NLLB_LANG_CODE
from src.nllb.nllbLangs import get_nllb_lang_names
from src.nllb.nllbLangs import get_nllb_lang_from_name

import shutil
import zhconv
import tqdm

# Configure more application defaults in config.json5

# Gradio seems to truncate files without keeping the extension, so we need to truncate the file prefix ourself 
MAX_FILE_PREFIX_LENGTH = 17

# Limit auto_parallel to a certain number of CPUs (specify vad_cpu_cores to get a higher number)
MAX_AUTO_CPU_CORES = 8

WHISPER_MODELS = ["tiny", "base", "small", "medium", "large", "large-v1", "large-v2", "large-v3"]

class VadOptions:
    def __init__(self, vad: str = None, vadMergeWindow: float = 5, vadMaxMergeSize: float = 150, vadPadding: float = 1, vadPromptWindow: float = 1, 
                                        vadInitialPromptMode: Union[VadInitialPromptMode, str] = VadInitialPromptMode.PREPREND_FIRST_SEGMENT):
        self.vad = vad
        self.vadMergeWindow = vadMergeWindow
        self.vadMaxMergeSize = vadMaxMergeSize
        self.vadPadding = vadPadding
        self.vadPromptWindow = vadPromptWindow
        self.vadInitialPromptMode = vadInitialPromptMode if isinstance(vadInitialPromptMode, VadInitialPromptMode) \
                                        else VadInitialPromptMode.from_string(vadInitialPromptMode)

class WhisperTranscriber:
    def __init__(self, input_audio_max_duration: float = None, vad_process_timeout: float = None, 
                 vad_cpu_cores: int = 1, delete_uploaded_files: bool = False, output_dir: str = None, 
                 app_config: ApplicationConfig = None):
        self.model_cache = ModelCache()
        self.parallel_device_list = None
        self.gpu_parallel_context = None
        self.cpu_parallel_context = None
        self.vad_process_timeout = vad_process_timeout
        self.vad_cpu_cores = vad_cpu_cores

        self.vad_model = None
        self.inputAudioMaxDuration = input_audio_max_duration
        self.deleteUploadedFiles = delete_uploaded_files
        self.output_dir = output_dir

        # Support for diarization
        self.diarization: DiarizationContainer = None
        # Dictionary with parameters to pass to diarization.run - if None, diarization is not enabled
        self.diarization_kwargs = None
        self.app_config = app_config

    def set_parallel_devices(self, vad_parallel_devices: str):
        self.parallel_device_list = [ device.strip() for device in vad_parallel_devices.split(",") ] if vad_parallel_devices else None

    def set_auto_parallel(self, auto_parallel: bool):
        if auto_parallel:
            if torch.cuda.is_available():
                self.parallel_device_list = [ str(gpu_id) for gpu_id in range(torch.cuda.device_count())]

            self.vad_cpu_cores = min(os.cpu_count(), MAX_AUTO_CPU_CORES)
            print("[Auto parallel] Using GPU devices " + str(self.parallel_device_list) + " and " + str(self.vad_cpu_cores) + " CPU cores for VAD/transcription.")

    def set_diarization(self, auth_token: str, enable_daemon_process: bool = True, **kwargs):
        if self.diarization is None:
            self.diarization = DiarizationContainer(auth_token=auth_token, enable_daemon_process=enable_daemon_process, 
                                                    auto_cleanup_timeout_seconds=self.app_config.diarization_process_timeout, 
                                                    cache=self.model_cache)
        # Set parameters
        self.diarization_kwargs = kwargs

    def unset_diarization(self):
        if self.diarization is not None:
            self.diarization.cleanup()
        self.diarization_kwargs = None

    # Entry function for the simple tab
    def transcribe_webui_simple(self, modelName, languageName, nllbModelName, nllbLangName, urlData, multipleFiles, microphoneData, task, 
                                vad, vadMergeWindow, vadMaxMergeSize, 
                                word_timestamps: bool = False, highlight_words: bool = False,
                                diarization: bool = False, diarization_speakers: int = 2,
                                diarization_min_speakers = 1, diarization_max_speakers = 8):
        return self.transcribe_webui_simple_progress(modelName, languageName, nllbModelName, nllbLangName, urlData, multipleFiles, microphoneData, task, 
                                vad, vadMergeWindow, vadMaxMergeSize, 
                                word_timestamps, highlight_words,
                                diarization, diarization_speakers,
                                diarization_min_speakers, diarization_max_speakers)
    
    # Entry function for the simple tab progress
    def transcribe_webui_simple_progress(self, modelName, languageName, nllbModelName, nllbLangName, urlData, multipleFiles, microphoneData, task, 
                                         vad, vadMergeWindow, vadMaxMergeSize, 
                                         word_timestamps: bool = False, highlight_words: bool = False, 
                                         diarization: bool = False, diarization_speakers: int = 2,
                                        diarization_min_speakers = 1, diarization_max_speakers = 8,
                                         progress=gr.Progress()):
        
        vadOptions = VadOptions(vad, vadMergeWindow, vadMaxMergeSize, self.app_config.vad_padding, self.app_config.vad_prompt_window, self.app_config.vad_initial_prompt_mode)

        if diarization:
            if diarization_speakers is not None and diarization_speakers < 1:
                self.set_diarization(auth_token=self.app_config.auth_token, min_speakers=diarization_min_speakers, max_speakers=diarization_max_speakers)
            else:
                self.set_diarization(auth_token=self.app_config.auth_token, num_speakers=diarization_speakers, min_speakers=diarization_min_speakers, max_speakers=diarization_max_speakers)
        else:
            self.unset_diarization()

        return self.transcribe_webui(modelName, languageName, nllbModelName, nllbLangName, urlData, multipleFiles, microphoneData, task, vadOptions, 
                                     word_timestamps=word_timestamps, highlight_words=highlight_words, progress=progress)

    # Entry function for the full tab
    def transcribe_webui_full(self, modelName, languageName, nllbModelName, nllbLangName, urlData, multipleFiles, microphoneData, task, 
                              vad, vadMergeWindow, vadMaxMergeSize, vadPadding, vadPromptWindow, vadInitialPromptMode, 
                              # Word timestamps
                              word_timestamps: bool, highlight_words: bool, prepend_punctuations: str, append_punctuations: str,
                              initial_prompt: str, temperature: float, best_of: int, beam_size: int, patience: float, length_penalty: float, suppress_tokens: str, 
                              condition_on_previous_text: bool, fp16: bool, temperature_increment_on_fallback: float, 
                              compression_ratio_threshold: float, logprob_threshold: float, no_speech_threshold: float,
                              diarization: bool = False, diarization_speakers: int = 2,
                              diarization_min_speakers = 1, diarization_max_speakers = 8):
        
        return self.transcribe_webui_full_progress(modelName, languageName, nllbModelName, nllbLangName, urlData, multipleFiles, microphoneData, task, 
                                vad, vadMergeWindow, vadMaxMergeSize, vadPadding, vadPromptWindow, vadInitialPromptMode,
                                word_timestamps, highlight_words, prepend_punctuations, append_punctuations,
                                initial_prompt, temperature, best_of, beam_size, patience, length_penalty, suppress_tokens,
                                condition_on_previous_text, fp16, temperature_increment_on_fallback,
                                compression_ratio_threshold, logprob_threshold, no_speech_threshold,
                                diarization, diarization_speakers,
                                diarization_min_speakers, diarization_max_speakers)

    # Entry function for the full tab with progress
    def transcribe_webui_full_progress(self, modelName, languageName, nllbModelName, nllbLangName, urlData, multipleFiles, microphoneData, task, 
                                        vad, vadMergeWindow, vadMaxMergeSize, vadPadding, vadPromptWindow, vadInitialPromptMode,
                                        # Word timestamps
                                        word_timestamps: bool, highlight_words: bool, prepend_punctuations: str, append_punctuations: str,   
                                        initial_prompt: str, temperature: float, best_of: int, beam_size: int, patience: float, length_penalty: float, suppress_tokens: str, 
                                        condition_on_previous_text: bool, fp16: bool, temperature_increment_on_fallback: float, 
                                        compression_ratio_threshold: float, logprob_threshold: float, no_speech_threshold: float, 
                                        diarization: bool = False, diarization_speakers: int = 2, 
                                        diarization_min_speakers = 1, diarization_max_speakers = 8,
                                        progress=gr.Progress()):

        # Handle temperature_increment_on_fallback
        if temperature_increment_on_fallback is not None:
            temperature = tuple(np.arange(temperature, 1.0 + 1e-6, temperature_increment_on_fallback))
        else:
            temperature = [temperature]

        vadOptions = VadOptions(vad, vadMergeWindow, vadMaxMergeSize, vadPadding, vadPromptWindow, vadInitialPromptMode)

        # Set diarization
        if diarization:
            if diarization_speakers is not None and diarization_speakers < 1:
                self.set_diarization(auth_token=self.app_config.auth_token, min_speakers=diarization_min_speakers, max_speakers=diarization_max_speakers)
            else:
                self.set_diarization(auth_token=self.app_config.auth_token, num_speakers=diarization_speakers, min_speakers=diarization_min_speakers, max_speakers=diarization_max_speakers)
        else:
            self.unset_diarization()

        return self.transcribe_webui(modelName, languageName, nllbModelName, nllbLangName, urlData, multipleFiles, microphoneData, task, vadOptions,
                                     initial_prompt=initial_prompt, temperature=temperature, best_of=best_of, beam_size=beam_size, patience=patience, length_penalty=length_penalty, suppress_tokens=suppress_tokens,
                                     condition_on_previous_text=condition_on_previous_text, fp16=fp16,
                                     compression_ratio_threshold=compression_ratio_threshold, logprob_threshold=logprob_threshold, no_speech_threshold=no_speech_threshold, 
                                     word_timestamps=word_timestamps, prepend_punctuations=prepend_punctuations, append_punctuations=append_punctuations, highlight_words=highlight_words,
                                     progress=progress)

    def transcribe_webui(self, modelName: str, languageName: str, nllbModelName: str, nllbLangName: str, urlData: str, multipleFiles, microphoneData: str, task: str, 
                         vadOptions: VadOptions, progress: gr.Progress = None, highlight_words: bool = False, 
                         **decodeOptions: dict):
        try:
            progress(0, desc="init audio sources")
            sources = self.__get_source(urlData, multipleFiles, microphoneData)
            if (len(sources) == 0):
                raise Exception("init audio sources failed...")
            try:
                progress(0, desc="init whisper model")
                whisper_lang = get_language_from_name(languageName)
                selectedLanguage = languageName.lower() if languageName is not None and len(languageName) > 0 else None
                selectedModel = modelName if modelName is not None else "base"

                model = create_whisper_container(whisper_implementation=self.app_config.whisper_implementation, 
                                                 model_name=selectedModel, compute_type=self.app_config.compute_type, 
                                                 cache=self.model_cache, models=self.app_config.models)
                
                progress(0, desc="init translate model")
                nllb_lang = get_nllb_lang_from_name(nllbLangName)
                selectedNllbModelName = nllbModelName if nllbModelName is not None and len(nllbModelName) > 0 else "nllb-200-distilled-600M/facebook"
                selectedNllbModel = next((modelConfig for modelConfig in self.app_config.nllb_models if modelConfig.name == selectedNllbModelName), None)
                
                nllb_model = NllbModel(model_config=selectedNllbModel, whisper_lang=whisper_lang, nllb_lang=nllb_lang) # load_model=True
                
                progress(0, desc="init transcribe")
                # Result
                download = []
                zip_file_lookup = {}
                text = ""
                vtt = ""

                # Write result
                downloadDirectory = tempfile.mkdtemp()
                source_index = 0
                extra_tasks_count = 1 if nllb_lang is not None else 0

                outputDirectory = self.output_dir if self.output_dir is not None else downloadDirectory

                # Progress
                total_duration = sum([source.get_audio_duration() for source in sources])
                current_progress = 0

                # A listener that will report progress to Gradio
                root_progress_listener = self._create_progress_listener(progress)
                sub_task_total = 1/(len(sources)+extra_tasks_count*len(sources))

                # Execute whisper
                for idx, source in enumerate(sources):
                    source_prefix = ""
                    source_audio_duration = source.get_audio_duration()

                    if (len(sources) > 1):
                        # Prefix (minimum 2 digits)
                        source_index += 1
                        source_prefix = str(source_index).zfill(2) + "_"
                        print("Transcribing ", source.source_path)

                    scaled_progress_listener = SubTaskProgressListener(root_progress_listener, 
                                                   base_task_total=1,
                                                   sub_task_start=idx*1/len(sources),
                                                   sub_task_total=sub_task_total)

                    # Transcribe
                    result = self.transcribe_file(model, source.source_path, selectedLanguage, task, vadOptions, scaled_progress_listener, **decodeOptions)
                    if whisper_lang is None and result["language"] is not None and len(result["language"]) > 0:
                        whisper_lang = get_language_from_code(result["language"])
                        nllb_model.whisper_lang = whisper_lang
                        
                    short_name, suffix = source.get_short_name_suffix(max_length=self.app_config.input_max_file_name_length)
                    filePrefix = slugify(source_prefix + short_name, allow_unicode=True)

                    # Update progress
                    current_progress += source_audio_duration

                    source_download, source_text, source_vtt = self.write_result(result, nllb_model, filePrefix + suffix.replace(".", "_"), outputDirectory, highlight_words, scaled_progress_listener)

                    if self.app_config.merge_subtitle_with_sources and self.app_config.output_dir is not None:
                        print("\nmerge subtitle(srt) with source file [" + source.source_name + "]\n")
                        outRsult = ""
                        try:
                            srt_path = source_download[0]
                            save_path = os.path.join(self.app_config.output_dir, filePrefix)
                            # save_without_ext, ext = os.path.splitext(save_path)
                            source_lang = "." + whisper_lang.code if whisper_lang is not None else ""
                            translate_lang = "." + nllb_lang.code if nllb_lang is not None else ""
                            output_with_srt = save_path + source_lang + translate_lang + suffix
        
                            #ffmpeg -i "input.mp4" -i "input.srt" -c copy -c:s mov_text output.mp4
                            input_file = ffmpeg.input(source.source_path)
                            input_srt = ffmpeg.input(srt_path)
                            out = ffmpeg.output(input_file, input_srt, output_with_srt, vcodec='copy', acodec='copy', scodec='mov_text')
                            outRsult = out.run(overwrite_output=True)
                        except Exception as e:
                            # Ignore error - it's just a cleanup
                            print("Error merge subtitle with source file: \n" + source.source_path + ", \n" + str(e), outRsult)
                    elif self.app_config.save_downloaded_files and self.app_config.output_dir is not None and urlData:
                        print("Saving downloaded file [" + source.source_name + "]")
                        try:
                            save_path = os.path.join(self.app_config.output_dir, filePrefix)
                            shutil.copy(source.source_path, save_path + suffix)
                        except Exception as e:
                            # Ignore error - it's just a cleanup
                            print("Error saving downloaded file: \n" + source.source_path + ", \n" + str(e))

                    if len(sources) > 1:
                        # Add new line separators
                        if (len(source_text) > 0):
                            source_text += os.linesep + os.linesep
                        if (len(source_vtt) > 0):
                            source_vtt += os.linesep + os.linesep

                        # Append file name to source text too
                        source_text = source.get_full_name() + ":" + os.linesep + source_text
                        source_vtt = source.get_full_name() + ":" + os.linesep + source_vtt

                    # Add to result
                    download.extend(source_download)
                    text += source_text
                    vtt += source_vtt

                    if (len(sources) > 1):
                        # Zip files support at least 260 characters, but we'll play it safe and use 200
                        zipFilePrefix = slugify(source_prefix + source.get_short_name(max_length=200), allow_unicode=True)

                        # File names in ZIP file can be longer
                        for source_download_file in source_download:
                            # Get file postfix (after last -)
                            filePostfix = os.path.basename(source_download_file).split("-")[-1]
                            zip_file_name = zipFilePrefix + "-" + filePostfix
                            zip_file_lookup[source_download_file] = zip_file_name

                # Create zip file from all sources
                if len(sources) > 1:
                    downloadAllPath = os.path.join(downloadDirectory, "All_Output-" + datetime.now().strftime("%Y%m%d-%H%M%S") + ".zip")

                    with zipfile.ZipFile(downloadAllPath, 'w', zipfile.ZIP_DEFLATED) as zip:
                        for download_file in download:
                            # Get file name from lookup
                            zip_file_name = zip_file_lookup.get(download_file, os.path.basename(download_file))
                            zip.write(download_file, arcname=zip_file_name)

                    download.insert(0, downloadAllPath)

                return download, text, vtt

            finally:
                # Cleanup source
                if self.deleteUploadedFiles:
                    for source in sources:
                        print("Deleting temporary source file: " + source.source_path)
                        try:
                            os.remove(source.source_path)
                        except Exception as e:
                            # Ignore error - it's just a cleanup
                            print("Error deleting temporary source file: \n" + source.source_path + ", \n" + str(e))
        
        except ExceededMaximumDuration as e:
            return [], ("[ERROR]: Maximum remote video length is " + str(e.maxDuration) + "s, file was " + str(e.videoDuration) + "s"), "[ERROR]"
        except Exception as e:
            import traceback
            print(traceback.format_exc())
            return [], ("Error occurred during transcribe: " + str(e)), ""
        

    def transcribe_file(self, model: AbstractWhisperContainer, audio_path: str, language: str, task: str = None, 
                        vadOptions: VadOptions = VadOptions(), 
                        progressListener: ProgressListener = None, **decodeOptions: dict):
        
        initial_prompt = decodeOptions.pop('initial_prompt', None)

        if progressListener is None:
            # Default progress listener
            progressListener = ProgressListener()

        if ('task' in decodeOptions):
            task = decodeOptions.pop('task')

        initial_prompt_mode = vadOptions.vadInitialPromptMode

        # Set default initial prompt mode
        if (initial_prompt_mode is None):
            initial_prompt_mode = VadInitialPromptMode.PREPREND_FIRST_SEGMENT

        if (initial_prompt_mode == VadInitialPromptMode.PREPEND_ALL_SEGMENTS or 
            initial_prompt_mode == VadInitialPromptMode.PREPREND_FIRST_SEGMENT):
            # Prepend initial prompt
            prompt_strategy = PrependPromptStrategy(initial_prompt, initial_prompt_mode)
        elif (vadOptions.vadInitialPromptMode == VadInitialPromptMode.JSON_PROMPT_MODE):
            # Use a JSON format to specify the prompt for each segment
            prompt_strategy = JsonPromptStrategy(initial_prompt)
        else:
            raise ValueError("Invalid vadInitialPromptMode: " + initial_prompt_mode)

        # Callable for processing an audio file
        whisperCallable = model.create_callback(language, task, prompt_strategy=prompt_strategy, **decodeOptions)

        # The results
        if (vadOptions.vad == 'silero-vad'):
            # Silero VAD where non-speech gaps are transcribed
            process_gaps = self._create_silero_config(NonSpeechStrategy.CREATE_SEGMENT, vadOptions)
            result = self.process_vad(audio_path, whisperCallable, self.vad_model, process_gaps, progressListener=progressListener)
        elif (vadOptions.vad == 'silero-vad-skip-gaps'):
            # Silero VAD where non-speech gaps are simply ignored
            skip_gaps = self._create_silero_config(NonSpeechStrategy.SKIP, vadOptions)
            result = self.process_vad(audio_path, whisperCallable, self.vad_model, skip_gaps, progressListener=progressListener)
        elif (vadOptions.vad == 'silero-vad-expand-into-gaps'):
            # Use Silero VAD where speech-segments are expanded into non-speech gaps
            expand_gaps = self._create_silero_config(NonSpeechStrategy.EXPAND_SEGMENT, vadOptions)
            result = self.process_vad(audio_path, whisperCallable, self.vad_model, expand_gaps, progressListener=progressListener)
        elif (vadOptions.vad == 'periodic-vad'):
            # Very simple VAD - mark every 5 minutes as speech. This makes it less likely that Whisper enters an infinite loop, but
            # it may create a break in the middle of a sentence, causing some artifacts.
            periodic_vad = VadPeriodicTranscription()
            period_config = PeriodicTranscriptionConfig(periodic_duration=vadOptions.vadMaxMergeSize, max_prompt_window=vadOptions.vadPromptWindow)
            result = self.process_vad(audio_path, whisperCallable, periodic_vad, period_config, progressListener=progressListener)

        else:
            if (self._has_parallel_devices()):
                # Use a simple period transcription instead, as we need to use the parallel context
                periodic_vad = VadPeriodicTranscription()
                period_config = PeriodicTranscriptionConfig(periodic_duration=math.inf, max_prompt_window=1)

                result = self.process_vad(audio_path, whisperCallable, periodic_vad, period_config, progressListener=progressListener)
            else:
                # Default VAD
                result = whisperCallable.invoke(audio_path, 0, None, None, progress_listener=progressListener)
        
        # Diarization
        if self.diarization and self.diarization_kwargs:
            print("Diarizing ", audio_path)
            diarization_result = list(self.diarization.run(audio_path, **self.diarization_kwargs))

            # Print result
            print("Diarization result: ")
            for entry in diarization_result:
                print(f"  start={entry.start:.1f}s stop={entry.end:.1f}s speaker_{entry.speaker}")

            # Add speakers to result
            result = self.diarization.mark_speakers(diarization_result, result)

        return result

    def _create_progress_listener(self, progress: gr.Progress):
        if (progress is None):
            # Dummy progress listener
            return ProgressListener()
        
        class ForwardingProgressListener(ProgressListener):
            def __init__(self, progress: gr.Progress):
                self.progress = progress

            def on_progress(self, current: Union[int, float], total: Union[int, float], desc: str = None):
                # From 0 to 1
                self.progress(current / total, desc=desc)

            def on_finished(self, desc: str = None):
                self.progress(1, desc=desc)

        return ForwardingProgressListener(progress)

    def process_vad(self, audio_path, whisperCallable, vadModel: AbstractTranscription, vadConfig: TranscriptionConfig, 
                    progressListener: ProgressListener = None):
        if (not self._has_parallel_devices()):
            # No parallel devices, so just run the VAD and Whisper in sequence
            return vadModel.transcribe(audio_path, whisperCallable, vadConfig, progressListener=progressListener)

        gpu_devices = self.parallel_device_list

        if (gpu_devices is None or len(gpu_devices) == 0):
            # No GPU devices specified, pass the current environment variable to the first GPU process. This may be NULL.
            gpu_devices = [os.environ.get("CUDA_VISIBLE_DEVICES", None)]

        # Create parallel context if needed
        if (self.gpu_parallel_context is None):
            # Create a context wih processes and automatically clear the pool after 1 hour of inactivity
            self.gpu_parallel_context = ParallelContext(num_processes=len(gpu_devices), auto_cleanup_timeout_seconds=self.vad_process_timeout)
        # We also need a CPU context for the VAD
        if (self.cpu_parallel_context is None):
            self.cpu_parallel_context = ParallelContext(num_processes=self.vad_cpu_cores, auto_cleanup_timeout_seconds=self.vad_process_timeout)

        parallel_vad = ParallelTranscription()
        return parallel_vad.transcribe_parallel(transcription=vadModel, audio=audio_path, whisperCallable=whisperCallable,  
                                                config=vadConfig, cpu_device_count=self.vad_cpu_cores, gpu_devices=gpu_devices, 
                                                cpu_parallel_context=self.cpu_parallel_context, gpu_parallel_context=self.gpu_parallel_context, 
                                                progress_listener=progressListener) 

    def _has_parallel_devices(self):
        return (self.parallel_device_list is not None and len(self.parallel_device_list) > 0) or self.vad_cpu_cores > 1

    def _concat_prompt(self, prompt1, prompt2):
        if (prompt1 is None):
            return prompt2
        elif (prompt2 is None):
            return prompt1
        else:
            return prompt1 + " " + prompt2

    def _create_silero_config(self, non_speech_strategy: NonSpeechStrategy, vadOptions: VadOptions):
        # Use Silero VAD 
        if (self.vad_model is None):
            self.vad_model = VadSileroTranscription()

        config = TranscriptionConfig(non_speech_strategy = non_speech_strategy, 
                max_silent_period=vadOptions.vadMergeWindow, max_merge_size=vadOptions.vadMaxMergeSize, 
                segment_padding_left=vadOptions.vadPadding, segment_padding_right=vadOptions.vadPadding, 
                max_prompt_window=vadOptions.vadPromptWindow)

        return config

    def write_result(self, result: dict, nllb_model: NllbModel, source_name: str, output_dir: str, highlight_words: bool = False, progressListener: ProgressListener = None):
        if not os.path.exists(output_dir):
            os.makedirs(output_dir)

        text = result["text"]
        segments = result["segments"]
        language = result["language"]
        languageMaxLineWidth = self.__get_max_line_width(language)

        if nllb_model.nllb_lang is not None:
            try:
                segments_progress_listener = SubTaskProgressListener(progressListener, 
                                               base_task_total=progressListener.sub_task_total, 
                                               sub_task_start=1, 
                                               sub_task_total=1)
                pbar = tqdm.tqdm(total=len(segments))
                perf_start_time = time.perf_counter()
                nllb_model.load_model()
                for idx, segment in enumerate(segments):
                    seg_text = segment["text"]
                    if language == "zh":
                        segment["text"] = zhconv.convert(seg_text, "zh-tw")
                    if nllb_model.nllb_lang is not None:
                        segment["text"] = nllb_model.translation(seg_text)
                    pbar.update(1)
                    segments_progress_listener.on_progress(idx+1, len(segments), desc=f"Process segments: {idx}/{len(segments)}")

                nllb_model.release_vram()
                perf_end_time = time.perf_counter()
                # Call the finished callback
                if segments_progress_listener is not None:
                    segments_progress_listener.on_finished(desc=f"Process segments: {idx}/{len(segments)}")

                print("\n\nprocess segments took {} seconds.\n\n".format(perf_end_time - perf_start_time))
            except Exception as e:
                # Ignore error - it's just a cleanup
                print("Error process segments: " + str(e))

        print("Max line width " + str(languageMaxLineWidth) + " for language:" + language)
        vtt = self.__get_subs(result["segments"], "vtt", languageMaxLineWidth, highlight_words=highlight_words)
        srt = self.__get_subs(result["segments"], "srt", languageMaxLineWidth, highlight_words=highlight_words)
        json_result = json.dumps(result, indent=4, ensure_ascii=False)

        if language == "zh" or (nllb_model.nllb_lang is not None and nllb_model.nllb_lang.code == "zho_Hant"):
            vtt = zhconv.convert(vtt, "zh-tw")
            srt = zhconv.convert(srt, "zh-tw")
            text = zhconv.convert(text, "zh-tw")
            json_result = zhconv.convert(json_result, "zh-tw")

        output_files = []
        output_files.append(self.__create_file(srt, output_dir, source_name + "-subs.srt"));
        output_files.append(self.__create_file(vtt, output_dir, source_name + "-subs.vtt"));
        output_files.append(self.__create_file(text, output_dir, source_name + "-transcript.txt"));
        output_files.append(self.__create_file(json_result, output_dir, source_name + "-result.json"));

        return output_files, text, vtt

    def clear_cache(self):
        self.model_cache.clear()
        self.vad_model = None

    def __get_source(self, urlData, multipleFiles, microphoneData):
        return get_audio_source_collection(urlData, multipleFiles, microphoneData, self.inputAudioMaxDuration)

    def __get_max_line_width(self, language: str) -> int:
        if (language and language.lower() in ["japanese", "ja", "chinese", "zh"]):
            # Chinese characters and kana are wider, so limit line length to 40 characters
            return 40
        else:
            # TODO: Add more languages
            # 80 latin characters should fit on a 1080p/720p screen
            return 80

    def __get_subs(self, segments: Iterator[dict], format: str, maxLineWidth: int, highlight_words: bool = False) -> str:
        segmentStream = StringIO()

        if format == 'vtt':
            write_vtt(segments, file=segmentStream, maxLineWidth=maxLineWidth, highlight_words=highlight_words)
        elif format == 'srt':
            write_srt(segments, file=segmentStream, maxLineWidth=maxLineWidth, highlight_words=highlight_words)
        else:
            raise Exception("Unknown format " + format)

        segmentStream.seek(0)
        return segmentStream.read()

    def __create_file(self, text: str, directory: str, fileName: str) -> str:
        # Write the text to a file
        with open(os.path.join(directory, fileName), 'w+', encoding="utf-8") as file:
            file.write(text)

        return file.name

    def close(self):
        print("Closing parallel contexts")
        self.clear_cache()

        if (self.gpu_parallel_context is not None):
            self.gpu_parallel_context.close()
        if (self.cpu_parallel_context is not None):
            self.cpu_parallel_context.close()

        # Cleanup diarization
        if (self.diarization is not None):
            self.diarization.cleanup()
            self.diarization = None

def create_ui(app_config: ApplicationConfig):
    ui = WhisperTranscriber(app_config.input_audio_max_duration, app_config.vad_process_timeout, app_config.vad_cpu_cores, 
                            app_config.delete_uploaded_files, app_config.output_dir, app_config)

    # Specify a list of devices to use for parallel processing
    ui.set_parallel_devices(app_config.vad_parallel_devices)
    ui.set_auto_parallel(app_config.auto_parallel)

    is_whisper = False

    if app_config.whisper_implementation == "whisper":
        implementation_name = "Whisper"
        is_whisper = True
    elif app_config.whisper_implementation in ["faster-whisper", "faster_whisper"]:
        implementation_name = "Faster Whisper"
    else:
        # Try to convert from camel-case to title-case
        implementation_name = app_config.whisper_implementation.title().replace("_", " ").replace("-", " ")

    ui_description = implementation_name + " is a general-purpose speech recognition model. It is trained on a large dataset of diverse " 
    ui_description += " audio and is also a multi-task model that can perform multilingual speech recognition "
    ui_description += " as well as speech translation and language identification. "

    ui_description += "\n\n\n\nFor longer audio files (>10 minutes) not in English, it is recommended that you select Silero VAD (Voice Activity Detector) in the VAD option."

    # Recommend faster-whisper
    if is_whisper:
        ui_description += "\n\n\n\nFor faster inference on GPU, try [faster-whisper](https://huggingface.co/spaces/aadnk/faster-whisper-webui)."

    if app_config.input_audio_max_duration > 0:
        ui_description += "\n\n" + "Max audio file length: " + str(app_config.input_audio_max_duration) + " s"

    ui_article = "Read the [documentation here](https://gitlab.com/aadnk/whisper-webui/-/blob/main/docs/options.md)."
    ui_article += "\n\nWhisper's Task 'translate' only implements the functionality of translating other languages into English. "
    ui_article += "OpenAI does not guarantee translations between arbitrary languages. In such cases, you can choose to use the NLLB Model to implement the translation task. "
    ui_article += "However, it's important to note that the NLLB Model runs slowly, and the completion time may be twice as long as usual. "
    ui_article += "\n\nThe larger the parameters of the NLLB model, the better its performance is expected to be. "
    ui_article += "However, it also requires higher computational resources, making it slower to operate. "
    ui_article += "On the other hand, the version converted from ct2 (CTranslate2) requires lower resources and operates at a faster speed."
    ui_article += "\n\nCurrently, enabling word-level timestamps cannot be used in conjunction with NLLB Model translation "
    ui_article += "because Word Timestamps will split the source text, and after translation, it becomes a non-word-level string. "
    ui_article += "\n\nThe 'mt5-zh-ja-en-trimmed' model is finetuned from Google's 'mt5-base' model. "
    ui_article += "This model has a relatively good translation speed, but it only supports three languages: Chinese, Japanese, and English. "

    whisper_models = app_config.get_model_names()
    nllb_models = app_config.get_nllb_model_names()
    
    common_whisper_inputs = lambda : [
        gr.Dropdown(label="Whisper Model (for audio)", choices=whisper_models, value=app_config.default_model_name),
        gr.Dropdown(label="Whisper Language", choices=sorted(get_language_names()), value=app_config.language),
    ]
    common_nllb_inputs = lambda : [
        gr.Dropdown(label="NLLB Model (for translate)", choices=nllb_models),
        gr.Dropdown(label="NLLB Language", choices=sorted(get_nllb_lang_names())),
    ]
    common_audio_inputs = lambda : [
        gr.Text(label="URL (YouTube, etc.)"),
        gr.File(label="Upload Files", file_count="multiple"),
        gr.Audio(source="microphone", type="filepath", label="Microphone Input"),
        gr.Dropdown(choices=["transcribe", "translate"], label="Task", value=app_config.task),
    ]

    common_vad_inputs = lambda : [
        gr.Dropdown(choices=["none", "silero-vad", "silero-vad-skip-gaps", "silero-vad-expand-into-gaps", "periodic-vad"], value=app_config.default_vad, label="VAD"),
        gr.Number(label="VAD - Merge Window (s)", precision=0, value=app_config.vad_merge_window),
        gr.Number(label="VAD - Max Merge Size (s)", precision=0, value=app_config.vad_max_merge_size),
    ]
    
    common_word_timestamps_inputs = lambda : [
        gr.Checkbox(label="Word Timestamps", value=app_config.word_timestamps),
        gr.Checkbox(label="Word Timestamps - Highlight Words", value=app_config.highlight_words),
    ]

    has_diarization_libs = Diarization.has_libraries()

    if not has_diarization_libs:
        print("Diarization libraries not found - disabling diarization")
        app_config.diarization = False

    common_diarization_inputs = lambda : [
        gr.Checkbox(label="Diarization", value=app_config.diarization, interactive=has_diarization_libs),
        gr.Number(label="Diarization - Speakers", precision=0, value=app_config.diarization_speakers, interactive=has_diarization_libs),
        gr.Number(label="Diarization - Min Speakers", precision=0, value=app_config.diarization_min_speakers, interactive=has_diarization_libs),
        gr.Number(label="Diarization - Max Speakers", precision=0, value=app_config.diarization_max_speakers, interactive=has_diarization_libs)
    ]
    
    common_output = lambda : [
        gr.File(label="Download"),
        gr.Text(label="Transcription", autoscroll=False),
        gr.Text(label="Segments", autoscroll=False),
    ]

    is_queue_mode = app_config.queue_concurrency_count is not None and app_config.queue_concurrency_count > 0

    simple_callback = gr.CSVLogger()

    with gr.Blocks() as simple_transcribe:
        gr.Markdown(ui_description)
        with gr.Row():
            with gr.Column():
                simple_submit = gr.Button("Submit", variant="primary")
                with gr.Column():
                    with gr.Row():
                        simple_input = common_whisper_inputs()
                    with gr.Row():
                        simple_input += common_nllb_inputs()
                with gr.Column():
                    simple_input += common_audio_inputs() + common_vad_inputs() + common_word_timestamps_inputs() + common_diarization_inputs()
            with gr.Column():
                simple_output = common_output()
                simple_flag = gr.Button("Flag")
        gr.Markdown(ui_article)

        # This needs to be called at some point prior to the first call to callback.flag()
        simple_callback.setup(simple_input + simple_output, "flagged")

        simple_submit.click(fn=ui.transcribe_webui_simple_progress if is_queue_mode else ui.transcribe_webui_simple,
                    inputs=simple_input, outputs=simple_output)
        # We can choose which components to flag -- in this case, we'll flag all of them
        simple_flag.click(lambda *args: print("simple_callback.flag...") or simple_callback.flag(args), simple_input + simple_output, None, preprocess=False)

    full_description = ui_description + "\n\n\n\n" + "Be careful when changing some of the options in the full interface - this can cause the model to crash."

    full_callback = gr.CSVLogger()

    with gr.Blocks() as full_transcribe:
        gr.Markdown(full_description)
        with gr.Row():
            with gr.Column():
                full_submit = gr.Button("Submit", variant="primary")
                with gr.Column():
                    with gr.Row():
                        full_input1 = common_whisper_inputs()
                    with gr.Row():
                        full_input1 += common_nllb_inputs()
                with gr.Column():
                    full_input1 += common_audio_inputs() + common_vad_inputs() + [
                    gr.Number(label="VAD - Padding (s)", precision=None, value=app_config.vad_padding),
                    gr.Number(label="VAD - Prompt Window (s)", precision=None, value=app_config.vad_prompt_window),
                    gr.Dropdown(choices=VAD_INITIAL_PROMPT_MODE_VALUES, label="VAD - Initial Prompt Mode")]

                    full_input2 = common_word_timestamps_inputs() + [
                    gr.Text(label="Word Timestamps - Prepend Punctuations", value=app_config.prepend_punctuations),
                    gr.Text(label="Word Timestamps - Append Punctuations", value=app_config.append_punctuations),
                    gr.TextArea(label="Initial Prompt"),
                    gr.Number(label="Temperature", value=app_config.temperature),
                    gr.Number(label="Best Of - Non-zero temperature", value=app_config.best_of, precision=0),
                    gr.Number(label="Beam Size - Zero temperature", value=app_config.beam_size, precision=0),
                    gr.Number(label="Patience - Zero temperature", value=app_config.patience),
                    gr.Number(label="Length Penalty - Any temperature", value=app_config.length_penalty),
                    gr.Text(label="Suppress Tokens - Comma-separated list of token IDs", value=app_config.suppress_tokens),
                    gr.Checkbox(label="Condition on previous text", value=app_config.condition_on_previous_text),
                    gr.Checkbox(label="FP16", value=app_config.fp16),
                    gr.Number(label="Temperature increment on fallback", value=app_config.temperature_increment_on_fallback),
                    gr.Number(label="Compression ratio threshold", value=app_config.compression_ratio_threshold),
                    gr.Number(label="Logprob threshold", value=app_config.logprob_threshold),
                    gr.Number(label="No speech threshold", value=app_config.no_speech_threshold)] + common_diarization_inputs()

            with gr.Column():
                full_output = common_output()
                full_flag = gr.Button("Flag")
        gr.Markdown(ui_article)

        # This needs to be called at some point prior to the first call to callback.flag()
        full_callback.setup(full_input1 + full_input2 + full_output, "flagged")

        full_submit.click(fn=ui.transcribe_webui_full_progress if is_queue_mode else ui.transcribe_webui_full,
                    inputs=full_input1+full_input2, outputs=full_output)
        # We can choose which components to flag -- in this case, we'll flag all of them
        full_flag.click(lambda *args: print("full_callback.flag...") or full_callback.flag(args), full_input1 + full_input2 + full_output, None, preprocess=False)

    demo = gr.TabbedInterface([simple_transcribe, full_transcribe], tab_names=["Simple", "Full"])

    # Queue up the demo
    if is_queue_mode:
        demo.queue(concurrency_count=app_config.queue_concurrency_count)
        print("Queue mode enabled (concurrency count: " + str(app_config.queue_concurrency_count) + ")")
    else:
        print("Queue mode disabled - progress bars will not be shown.")
   
    demo.launch(inbrowser=app_config.autolaunch, share=app_config.share, server_name=app_config.server_name, server_port=app_config.server_port)
    
    # Clean up
    ui.close()

if __name__ == '__main__':
    default_app_config = ApplicationConfig.create_default()
    whisper_models = default_app_config.get_model_names()
    nllb_models = default_app_config.get_nllb_model_names()

    # Environment variable overrides
    default_whisper_implementation = os.environ.get("WHISPER_IMPLEMENTATION", default_app_config.whisper_implementation)

    parser = argparse.ArgumentParser(formatter_class=argparse.ArgumentDefaultsHelpFormatter)
    parser.add_argument("--input_audio_max_duration", type=int, default=default_app_config.input_audio_max_duration, \
                        help="Maximum audio file length in seconds, or -1 for no limit.") # 600
    parser.add_argument("--share", type=bool, default=default_app_config.share, \
                        help="True to share the app on HuggingFace.") # False
    parser.add_argument("--server_name", type=str, default=default_app_config.server_name, \
                        help="The host or IP to bind to. If None, bind to localhost.") # None
    parser.add_argument("--server_port", type=int, default=default_app_config.server_port, \
                        help="The port to bind to.") # 7860
    parser.add_argument("--queue_concurrency_count", type=int, default=default_app_config.queue_concurrency_count, \
                        help="The number of concurrent requests to process.") # 1
    parser.add_argument("--default_model_name", type=str, choices=whisper_models, default=default_app_config.default_model_name, \
                        help="The default model name.") # medium
    parser.add_argument("--default_vad", type=str, default=default_app_config.default_vad, \
                        help="The default VAD.") # silero-vad
    parser.add_argument("--vad_initial_prompt_mode", type=str, default=default_app_config.vad_initial_prompt_mode, choices=VAD_INITIAL_PROMPT_MODE_VALUES, \
                        help="Whether or not to prepend the initial prompt to each VAD segment (prepend_all_segments), or just the first segment (prepend_first_segment)") # prepend_first_segment
    parser.add_argument("--vad_parallel_devices", type=str, default=default_app_config.vad_parallel_devices, \
                        help="A commma delimited list of CUDA devices to use for parallel processing. If None, disable parallel processing.") # ""
    parser.add_argument("--vad_cpu_cores", type=int, default=default_app_config.vad_cpu_cores, \
                        help="The number of CPU cores to use for VAD pre-processing.") # 1
    parser.add_argument("--vad_process_timeout", type=float, default=default_app_config.vad_process_timeout, \
                        help="The number of seconds before inactivate processes are terminated. Use 0 to close processes immediately, or None for no timeout.") # 1800
    parser.add_argument("--auto_parallel", type=bool, default=default_app_config.auto_parallel, \
                        help="True to use all available GPUs and CPU cores for processing. Use vad_cpu_cores/vad_parallel_devices to specify the number of CPU cores/GPUs to use.") # False
    parser.add_argument("--output_dir", "-o", type=str, default=default_app_config.output_dir, \
                        help="directory to save the outputs")
    parser.add_argument("--whisper_implementation", type=str, default=default_whisper_implementation, choices=["whisper", "faster-whisper"],\
                        help="the Whisper implementation to use")
    parser.add_argument("--compute_type", type=str, default=default_app_config.compute_type, choices=["default", "auto", "int8", "int8_float16", "int16", "float16", "float32"], \
                        help="the compute type to use for inference")
    parser.add_argument("--threads", type=optional_int, default=0, 
                        help="number of threads used by torch for CPU inference; supercedes MKL_NUM_THREADS/OMP_NUM_THREADS")
    parser.add_argument("--vad_max_merge_size", type=int, default=default_app_config.vad_max_merge_size, \
                        help="The number of VAD - Max Merge Size (s).") # 30
    parser.add_argument("--language", type=str, default=None, choices=sorted(get_language_names()) + sorted([k.title() for k in _TO_LANGUAGE_CODE.keys()]),
                        help="language spoken in the audio, specify None to perform language detection")
    parser.add_argument("--save_downloaded_files", action='store_true', \
                        help="True to move downloaded files to outputs directory. This argument will take effect only after output_dir is set.")
    parser.add_argument("--merge_subtitle_with_sources", action='store_true', \
                        help="True to merge subtitle(srt) with sources and move the sources files to the outputs directory. This argument will take effect only after output_dir is set.")
    parser.add_argument("--input_max_file_name_length", type=int, default=100, \
                        help="Maximum length of a file name.")
    parser.add_argument("--autolaunch", action='store_true', \
                        help="open the webui URL in the system's default browser upon launch")
    parser.add_argument('--auth_token', type=str, default=default_app_config.auth_token, help='HuggingFace API Token (optional)')
    parser.add_argument("--diarization", type=str2bool, default=default_app_config.diarization, \
                        help="whether to perform speaker diarization")
    parser.add_argument("--diarization_num_speakers", type=int, default=default_app_config.diarization_speakers, help="Number of speakers")
    parser.add_argument("--diarization_min_speakers", type=int, default=default_app_config.diarization_min_speakers, help="Minimum number of speakers")
    parser.add_argument("--diarization_max_speakers", type=int, default=default_app_config.diarization_max_speakers, help="Maximum number of speakers")
    parser.add_argument("--diarization_process_timeout", type=int, default=default_app_config.diarization_process_timeout, \
                        help="Number of seconds before inactivate diarization processes are terminated. Use 0 to close processes immediately, or None for no timeout.")

    args = parser.parse_args().__dict__

    updated_config = default_app_config.update(**args)

    # updated_config.whisper_implementation = "faster-whisper"
    # updated_config.input_audio_max_duration = -1
    # updated_config.default_model_name = "large-v2"
    # updated_config.output_dir = "output"
    # updated_config.vad_max_merge_size = 90
    # updated_config.merge_subtitle_with_sources = False
    # updated_config.autolaunch = True
    # updated_config.auto_parallel = False
    # updated_config.save_downloaded_files = True

    if (threads := args.pop("threads")) > 0:
        torch.set_num_threads(threads)

    print("Using whisper implementation: " + updated_config.whisper_implementation)
    create_ui(app_config=updated_config)