File size: 7,308 Bytes
a72119e
 
 
 
 
 
496112d
 
 
 
8365126
 
 
a72119e
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1f22cbc
de54836
55e1949
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1f22cbc
55e1949
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
6d754a8
 
de54836
d3daa33
a72119e
 
6d754a8
a72119e
 
 
 
 
6d754a8
402afc5
55e1949
d3daa33
402afc5
c8cc221
402afc5
 
6d754a8
 
2189235
6d754a8
293e082
 
 
5d2dafa
4902bd9
70e42a3
b1d6fce
d3daa33
402afc5
4902bd9
d3daa33
 
 
 
 
 
402afc5
d3daa33
402afc5
 
 
 
55e1949
402afc5
d3daa33
 
 
55e1949
 
 
 
 
d3daa33
55e1949
 
d3daa33
55e1949
d3daa33
 
 
55e1949
1b81f82
55e1949
 
 
 
1f22cbc
d3daa33
 
 
 
26a50b2
b8c17c8
2189235
d3daa33
55e1949
1f22cbc
2189235
d3daa33
a72119e
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
import gradio as gr
from loadimg import load_img
import spaces
from transformers import AutoModelForImageSegmentation
import torch
from torchvision import transforms
import moviepy.editor as mp
from pydub import AudioSegment
from PIL import Image
import numpy as np
import os
import tempfile
import uuid

torch.set_float32_matmul_precision(["high", "highest"][0])

birefnet = AutoModelForImageSegmentation.from_pretrained(
    "ZhengPeng7/BiRefNet", trust_remote_code=True
)
birefnet.to("cuda")
transform_image = transforms.Compose(
    [
        transforms.Resize((1024, 1024)),
        transforms.ToTensor(),
        transforms.Normalize([0.485, 0.456, 0.406], [0.229, 0.224, 0.225]),
    ]
)


@spaces.GPU
def fn(vid, bg_type="Color", bg_image=None, bg_video=None, color="#00FF00", fps=0, video_handling="slow_down"):
    try:
        # Load the video using moviepy
        video = mp.VideoFileClip(vid)

        # Load original fps if fps value is equal to 0
        if fps == 0:
            fps = video.fps

        # Extract audio from the video
        audio = video.audio

        # Extract frames at the specified FPS
        frames = video.iter_frames(fps=fps)

        # Process each frame for background removal
        processed_frames = []
        yield gr.update(visible=True), gr.update(visible=False)

        if bg_type == "Video":
            background_video = mp.VideoFileClip(bg_video)
            if background_video.duration < video.duration:
                if video_handling == "slow_down":
                    background_video = background_video.fx(mp.vfx.speedx, factor=video.duration / background_video.duration)
                else:  # video_handling == "loop"
                    background_video = mp.concatenate_videoclips([background_video] * int(video.duration / background_video.duration + 1))
            background_frames = background_video.iter_frames(fps=fps)
        else:
            background_frames = None

        for i, frame in enumerate(frames):
            pil_image = Image.fromarray(frame)
            if bg_type == "Color":
                processed_image = process(pil_image, color)
            elif bg_type == "Image":
                processed_image = process(pil_image, bg_image)
            elif bg_type == "Video":
                try:
                    background_frame = next(background_frames)
                    background_image = Image.fromarray(background_frame)
                    processed_image = process(pil_image, background_image)
                except StopIteration:
                    # Handle case where background video is shorter than input video
                    processed_image = process(pil_image, "#000000")  # Default to black background
            else:
                processed_image = pil_image  # Default to original image if no background is selected

            processed_frames.append(np.array(processed_image))
            yield processed_image, None

        # Create a new video from the processed frames
        processed_video = mp.ImageSequenceClip(processed_frames, fps=fps)

        # Add the original audio back to the processed video
        processed_video = processed_video.set_audio(audio)

        # Save the processed video to a temporary file
        temp_dir = "temp"
        os.makedirs(temp_dir, exist_ok=True)
        unique_filename = str(uuid.uuid4()) + ".mp4"
        temp_filepath = os.path.join(temp_dir, unique_filename)
        processed_video.write_videofile(temp_filepath, codec="libx264")

        yield gr.update(visible=False), gr.update(visible=True)
        # Return the path to the temporary file
        yield processed_image, temp_filepath

    except Exception as e:
        print(f"Error: {e}")
        yield gr.update(visible=False), gr.update(visible=True)
        yield None, f"Error processing video: {e}"



def process(image, bg):
    image_size = image.size
    input_images = transform_image(image).unsqueeze(0).to("cuda")
    # Prediction
    with torch.no_grad():
        preds = birefnet(input_images)[-1].sigmoid().cpu()
    pred = preds[0].squeeze()
    pred_pil = transforms.ToPILImage()(pred)
    mask = pred_pil.resize(image_size)

    if isinstance(bg, str) and bg.startswith("#"):
        color_rgb = tuple(int(bg[i:i+2], 16) for i in (1, 3, 5))
        background = Image.new("RGBA", image_size, color_rgb + (255,))
    elif isinstance(bg, Image.Image):
        background = bg.convert("RGBA").resize(image_size)
    else:
        background = Image.open(bg).convert("RGBA").resize(image_size)

    # Composite the image onto the background using the mask
    image = Image.composite(image, background, mask)

    return image


with gr.Blocks(theme=gr.themes.Ocean()) as demo:
    with gr.Row():
        in_video = gr.Video(label="Input Video", interactive=True)
        stream_image = gr.Image(label="Streaming Output", visible=False)
        out_video = gr.Video(label="Final Output Video")
    submit_button = gr.Button("Change Background", interactive=True)
    with gr.Row():
        fps_slider = gr.Slider(
            minimum=0,
            maximum=60,
            step=1,
            value=0,
            label="Output FPS (0 will inherit the original fps value)",
            interactive=True
        )
        bg_type = gr.Radio(["Color", "Image", "Video"], label="Background Type", value="Color", interactive=True)
        color_picker = gr.ColorPicker(label="Background Color", value="#00FF00", visible=True, interactive=True)
        bg_image = gr.Image(label="Background Image", type="filepath", visible=False, interactive=True)
        bg_video = gr.Video(label="Background Video", visible=False, interactive=True)
        with gr.Column(visible=False) as video_handling_options:
            video_handling_radio = gr.Radio(["slow_down", "loop"], label="Video Handling", value="slow_down", interactive=True)

    def update_visibility(bg_type):
        if bg_type == "Color":
            return gr.update(visible=True), gr.update(visible=False), gr.update(visible=False), gr.update(visible=False)
        elif bg_type == "Image":
            return gr.update(visible=False), gr.update(visible=True), gr.update(visible=False), gr.update(visible=False)
        elif bg_type == "Video":
            return gr.update(visible=False), gr.update(visible=False), gr.update(visible=True), gr.update(visible=True)
        else:
            return gr.update(visible=False), gr.update(visible=False), gr.update(visible=False), gr.update(visible=False)


    bg_type.change(update_visibility, inputs=bg_type, outputs=[color_picker, bg_image, bg_video, video_handling_options])


    examples = gr.Examples(
        [
            ["rickroll-2sec.mp4", "Video", None, "background.mp4"],
            ["rickroll-2sec.mp4", "Image", "images.webp", None],
            ["rickroll-2sec.mp4", "Color", None, None],
        ],
        inputs=[in_video, bg_type, bg_image, bg_video],
        outputs=[stream_image, out_video],
        fn=fn,
        cache_examples=True,
        cache_mode="eager",
    )


    submit_button.click(
        fn,
        inputs=[in_video, bg_type, bg_image, bg_video, color_picker, fps_slider, video_handling_radio],
        outputs=[stream_image, out_video],
    )

if __name__ == "__main__":
    demo.launch(show_error=True)