File size: 10,865 Bytes
835cd00
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
"""
Taken from https://github.com/finegrain-ai/refiners
Modified from https://github.com/philz1337x/clarity-upscaler
which is a copy of https://github.com/AUTOMATIC1111/stable-diffusion-webui
which is a copy of https://github.com/victorca25/iNNfer
which is a copy of https://github.com/xinntao/ESRGAN
"""

import math
from pathlib import Path
from typing import NamedTuple

import numpy as np
import numpy.typing as npt
import torch
import torch.nn as nn
from PIL import Image
from huggingface_hub import hf_hub_download


def conv_block(in_nc: int, out_nc: int) -> nn.Sequential:
    return nn.Sequential(
        nn.Conv2d(in_nc, out_nc, kernel_size=3, padding=1),
        nn.LeakyReLU(negative_slope=0.2, inplace=True),
    )


class ResidualDenseBlock_5C(nn.Module):
    """
    Residual Dense Block
    The core module of paper: (Residual Dense Network for Image Super-Resolution, CVPR 18)
    Modified options that can be used:
        - "Partial Convolution based Padding" arXiv:1811.11718
        - "Spectral normalization" arXiv:1802.05957
        - "ICASSP 2020 - ESRGAN+ : Further Improving ESRGAN" N. C.
            {Rakotonirina} and A. {Rasoanaivo}
    """

    def __init__(self, nf: int = 64, gc: int = 32) -> None:
        super().__init__()  # type: ignore[reportUnknownMemberType]

        self.conv1 = conv_block(nf, gc)
        self.conv2 = conv_block(nf + gc, gc)
        self.conv3 = conv_block(nf + 2 * gc, gc)
        self.conv4 = conv_block(nf + 3 * gc, gc)
        # Wrapped in Sequential because of key in state dict.
        self.conv5 = nn.Sequential(nn.Conv2d(nf + 4 * gc, nf, kernel_size=3, padding=1))

    def forward(self, x: torch.Tensor) -> torch.Tensor:
        x1 = self.conv1(x)
        x2 = self.conv2(torch.cat((x, x1), 1))
        x3 = self.conv3(torch.cat((x, x1, x2), 1))
        x4 = self.conv4(torch.cat((x, x1, x2, x3), 1))
        x5 = self.conv5(torch.cat((x, x1, x2, x3, x4), 1))
        return x5 * 0.2 + x


class RRDB(nn.Module):
    """
    Residual in Residual Dense Block
    (ESRGAN: Enhanced Super-Resolution Generative Adversarial Networks)
    """

    def __init__(self, nf: int) -> None:
        super().__init__()  # type: ignore[reportUnknownMemberType]
        self.RDB1 = ResidualDenseBlock_5C(nf)
        self.RDB2 = ResidualDenseBlock_5C(nf)
        self.RDB3 = ResidualDenseBlock_5C(nf)

    def forward(self, x: torch.Tensor) -> torch.Tensor:
        out = self.RDB1(x)
        out = self.RDB2(out)
        out = self.RDB3(out)
        return out * 0.2 + x


class Upsample2x(nn.Module):
    """Upsample 2x."""

    def __init__(self) -> None:
        super().__init__()  # type: ignore[reportUnknownMemberType]

    def forward(self, x: torch.Tensor) -> torch.Tensor:
        return nn.functional.interpolate(x, scale_factor=2.0)  # type: ignore


class ShortcutBlock(nn.Module):
    """Elementwise sum the output of a submodule to its input"""

    def __init__(self, submodule: nn.Module) -> None:
        super().__init__()  # type: ignore[reportUnknownMemberType]
        self.sub = submodule

    def forward(self, x: torch.Tensor) -> torch.Tensor:
        return x + self.sub(x)


class RRDBNet(nn.Module):
    def __init__(self, in_nc: int, out_nc: int, nf: int, nb: int) -> None:
        super().__init__()  # type: ignore[reportUnknownMemberType]
        assert in_nc % 4 != 0  # in_nc is 3

        self.model = nn.Sequential(
            nn.Conv2d(in_nc, nf, kernel_size=3, padding=1),
            ShortcutBlock(
                nn.Sequential(
                    *(RRDB(nf) for _ in range(nb)),
                    nn.Conv2d(nf, nf, kernel_size=3, padding=1),
                )
            ),
            Upsample2x(),
            nn.Conv2d(nf, nf, kernel_size=3, padding=1),
            nn.LeakyReLU(negative_slope=0.2, inplace=True),
            Upsample2x(),
            nn.Conv2d(nf, nf, kernel_size=3, padding=1),
            nn.LeakyReLU(negative_slope=0.2, inplace=True),
            nn.Conv2d(nf, nf, kernel_size=3, padding=1),
            nn.LeakyReLU(negative_slope=0.2, inplace=True),
            nn.Conv2d(nf, out_nc, kernel_size=3, padding=1),
        )

    def forward(self, x: torch.Tensor) -> torch.Tensor:
        return self.model(x)


def infer_params(state_dict: dict[str, torch.Tensor]) -> tuple[int, int, int, int, int]:
    # this code is adapted from https://github.com/victorca25/iNNfer
    scale2x = 0
    scalemin = 6
    n_uplayer = 0
    out_nc = 0
    nb = 0

    for block in list(state_dict):
        parts = block.split(".")
        n_parts = len(parts)
        if n_parts == 5 and parts[2] == "sub":
            nb = int(parts[3])
        elif n_parts == 3:
            part_num = int(parts[1])
            if part_num > scalemin and parts[0] == "model" and parts[2] == "weight":
                scale2x += 1
            if part_num > n_uplayer:
                n_uplayer = part_num
                out_nc = state_dict[block].shape[0]
        assert "conv1x1" not in block  # no ESRGANPlus

    nf = state_dict["model.0.weight"].shape[0]
    in_nc = state_dict["model.0.weight"].shape[1]
    scale = 2**scale2x

    assert out_nc > 0
    assert nb > 0

    return in_nc, out_nc, nf, nb, scale  # 3, 3, 64, 23, 4


Tile = tuple[int, int, Image.Image]
Tiles = list[tuple[int, int, list[Tile]]]


# https://github.com/philz1337x/clarity-upscaler/blob/e0cd797198d1e0e745400c04d8d1b98ae508c73b/modules/images.py#L64
class Grid(NamedTuple):
    tiles: Tiles
    tile_w: int
    tile_h: int
    image_w: int
    image_h: int
    overlap: int


# adapted from https://github.com/philz1337x/clarity-upscaler/blob/e0cd797198d1e0e745400c04d8d1b98ae508c73b/modules/images.py#L67
def split_grid(image: Image.Image, tile_w: int = 512, tile_h: int = 512, overlap: int = 64) -> Grid:
    w = image.width
    h = image.height

    non_overlap_width = tile_w - overlap
    non_overlap_height = tile_h - overlap

    cols = max(1, math.ceil((w - overlap) / non_overlap_width))
    rows = max(1, math.ceil((h - overlap) / non_overlap_height))

    dx = (w - tile_w) / (cols - 1) if cols > 1 else 0
    dy = (h - tile_h) / (rows - 1) if rows > 1 else 0

    grid = Grid([], tile_w, tile_h, w, h, overlap)
    for row in range(rows):
        row_images: list[Tile] = []
        y1 = max(min(int(row * dy), h - tile_h), 0)
        y2 = min(y1 + tile_h, h)
        for col in range(cols):
            x1 = max(min(int(col * dx), w - tile_w), 0)
            x2 = min(x1 + tile_w, w)
            tile = image.crop((x1, y1, x2, y2))
            row_images.append((x1, tile_w, tile))
        grid.tiles.append((y1, tile_h, row_images))

    return grid


# https://github.com/philz1337x/clarity-upscaler/blob/e0cd797198d1e0e745400c04d8d1b98ae508c73b/modules/images.py#L104
def combine_grid(grid: Grid):
    def make_mask_image(r: npt.NDArray[np.float32]) -> Image.Image:
        r = r * 255 / grid.overlap
        return Image.fromarray(r.astype(np.uint8), "L")

    mask_w = make_mask_image(
        np.arange(grid.overlap, dtype=np.float32).reshape((1, grid.overlap)).repeat(grid.tile_h, axis=0)
    )
    mask_h = make_mask_image(
        np.arange(grid.overlap, dtype=np.float32).reshape((grid.overlap, 1)).repeat(grid.image_w, axis=1)
    )

    combined_image = Image.new("RGB", (grid.image_w, grid.image_h))
    for y, h, row in grid.tiles:
        combined_row = Image.new("RGB", (grid.image_w, h))
        for x, w, tile in row:
            if x == 0:
                combined_row.paste(tile, (0, 0))
                continue

            combined_row.paste(tile.crop((0, 0, grid.overlap, h)), (x, 0), mask=mask_w)
            combined_row.paste(tile.crop((grid.overlap, 0, w, h)), (x + grid.overlap, 0))

        if y == 0:
            combined_image.paste(combined_row, (0, 0))
            continue

        combined_image.paste(
            combined_row.crop((0, 0, combined_row.width, grid.overlap)),
            (0, y),
            mask=mask_h,
        )
        combined_image.paste(
            combined_row.crop((0, grid.overlap, combined_row.width, h)),
            (0, y + grid.overlap),
        )

    return combined_image


class UpscalerESRGAN:
    def __init__(self, model_path: Path, device: torch.device, dtype: torch.dtype):
        self.model_path = model_path
        self.device = device
        self.model = self.load_model(model_path)
        self.to(device, dtype)

    def __call__(self, img: Image.Image) -> Image.Image:
        return self.upscale_without_tiling(img)

    def to(self, device: torch.device, dtype: torch.dtype):
        self.device = device
        self.dtype = dtype
        self.model.to(device=device, dtype=dtype)

    def load_model(self, path: Path) -> RRDBNet:
        filename = path
        state_dict: dict[str, torch.Tensor] = torch.load(filename, weights_only=True, map_location=self.device)  # type: ignore
        in_nc, out_nc, nf, nb, upscale = infer_params(state_dict)
        assert upscale == 4, "Only 4x upscaling is supported"
        model = RRDBNet(in_nc=in_nc, out_nc=out_nc, nf=nf, nb=nb)
        model.load_state_dict(state_dict)
        model.eval()

        return model

    def upscale_without_tiling(self, img: Image.Image) -> Image.Image:
        img_np = np.array(img)
        img_np = img_np[:, :, ::-1]
        img_np = np.ascontiguousarray(np.transpose(img_np, (2, 0, 1))) / 255
        img_t = torch.from_numpy(img_np).float()  # type: ignore
        img_t = img_t.unsqueeze(0).to(device=self.device, dtype=self.dtype)
        with torch.no_grad():
            output = self.model(img_t)
        output = output.squeeze().float().cpu().clamp_(0, 1).numpy()
        output = 255.0 * np.moveaxis(output, 0, 2)
        output = output.astype(np.uint8)
        output = output[:, :, ::-1]
        return Image.fromarray(output, "RGB")

    # https://github.com/philz1337x/clarity-upscaler/blob/e0cd797198d1e0e745400c04d8d1b98ae508c73b/modules/esrgan_model.py#L208
    def upscale_with_tiling(self, img: Image.Image) -> Image.Image:
        img = img.convert("RGB")
        grid = split_grid(img)
        newtiles: Tiles = []
        scale_factor: int = 1

        for y, h, row in grid.tiles:
            newrow: list[Tile] = []
            for tiledata in row:
                x, w, tile = tiledata
                output = self.upscale_without_tiling(tile)
                scale_factor = output.width // tile.width
                newrow.append((x * scale_factor, w * scale_factor, output))
            newtiles.append((y * scale_factor, h * scale_factor, newrow))

        newgrid = Grid(
            newtiles,
            grid.tile_w * scale_factor,
            grid.tile_h * scale_factor,
            grid.image_w * scale_factor,
            grid.image_h * scale_factor,
            grid.overlap * scale_factor,
        )
        output = combine_grid(newgrid)
        return output