File size: 7,349 Bytes
1ca8185
835cd00
 
 
 
1ca8185
835cd00
1ca8185
 
 
 
 
 
835cd00
1ca8185
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
835cd00
1ca8185
 
835cd00
 
 
 
 
 
 
 
1ca8185
 
 
 
 
835cd00
1ca8185
 
835cd00
1ca8185
 
 
 
 
 
 
835cd00
 
 
 
 
 
 
 
 
 
 
 
 
 
1ca8185
 
 
 
80cc34d
1ca8185
835cd00
 
 
1ca8185
 
 
 
 
835cd00
1ca8185
 
 
 
 
 
 
 
835cd00
1ca8185
 
835cd00
1ca8185
 
 
835cd00
 
1ca8185
 
835cd00
1ca8185
 
835cd00
1ca8185
 
 
835cd00
1ca8185
835cd00
 
1ca8185
 
835cd00
 
 
1ca8185
835cd00
 
 
1ca8185
 
 
 
835cd00
 
1ca8185
 
 
 
 
835cd00
 
1ca8185
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
835cd00
1ca8185
835cd00
 
 
 
 
 
 
 
1ca8185
835cd00
 
 
1ca8185
835cd00
1ca8185
 
 
 
 
835cd00
1ca8185
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
import os
from pathlib import Path

from diffusers import AutoencoderKL, EulerDiscreteScheduler, UNet2DConditionModel
from esrgan_model import UpscalerESRGAN
import gradio as gr
from huggingface_hub import hf_hub_download
import spaces
import torch
import torch.nn as nn
from torchvision.io import read_image
import torchvision.transforms.v2 as transforms
from torchvision.utils import make_grid
from transformers import SiglipImageProcessor, SiglipVisionModel


class TryOffDiff(nn.Module):
    def __init__(self):
        super().__init__()
        self.unet = UNet2DConditionModel.from_pretrained("CompVis/stable-diffusion-v1-4", subfolder="unet")
        self.transformer = torch.nn.TransformerEncoderLayer(d_model=768, nhead=8, batch_first=True)
        self.proj = nn.Linear(1024, 77)
        self.norm = nn.LayerNorm(768)

    def adapt_embeddings(self, x):
        x = self.transformer(x)
        x = self.proj(x.permute(0, 2, 1)).permute(0, 2, 1)
        return self.norm(x)

    def forward(self, noisy_latents, t, cond_emb):
        cond_emb = self.adapt_embeddings(cond_emb)
        return self.unet(noisy_latents, t, encoder_hidden_states=cond_emb).sample


class PadToSquare:
    def __call__(self, img):
        _, h, w = img.shape  # Get the original dimensions
        max_side = max(h, w)
        pad_h = (max_side - h) // 2
        pad_w = (max_side - w) // 2
        padding = (pad_w, pad_h, max_side - w - pad_w, max_side - h - pad_h)
        return transforms.functional.pad(img, padding, padding_mode="edge")


# Set device
device = "cuda" if torch.cuda.is_available() else "cpu"

# Initialize Image Encoder
img_processor = SiglipImageProcessor.from_pretrained(
    "google/siglip-base-patch16-512", do_resize=False, do_rescale=False, do_normalize=False
)
img_enc = SiglipVisionModel.from_pretrained("google/siglip-base-patch16-512").eval().to(device)
img_enc_transform = transforms.Compose(
    [
        PadToSquare(),  # Custom transform to pad the image to a square
        transforms.Resize((512, 512)),
        transforms.ToDtype(torch.float32, scale=True),
        transforms.Normalize(mean=[0.5], std=[0.5]),
    ]
)

# Load TryOffDiff Model
path_model = hf_hub_download(
    repo_id="rizavelioglu/tryoffdiff",
    filename="tryoffdiff.pth",  # or one of ["ldm-1", "ldm-2", "ldm-3", ...],
    force_download=False,
)
path_scheduler = hf_hub_download(
    repo_id="rizavelioglu/tryoffdiff", filename="scheduler/scheduler_config.json", force_download=False
)
net = TryOffDiff()
net.load_state_dict(torch.load(path_model, weights_only=False))
net.eval().to(device)

# Initialize VAE (only Decoder will be used)
vae = AutoencoderKL.from_pretrained("CompVis/stable-diffusion-v1-4", subfolder="vae").eval().to(device)

# Initialize the upscaler
upscaler = UpscalerESRGAN(
    model_path=Path(
        hf_hub_download(
            repo_id="philz1337x/upscaler",
            filename="4x-UltraSharp.pth",
            # revision="011deacac8270114eb7d2eeff4fe6fa9a837be70",
        )
    ),
    device=torch.device("cuda" if torch.cuda.is_available() else "cpu"),
    dtype=torch.float32,
)

torch.cuda.empty_cache()


# Define image generation function
@spaces.GPU(duration=10)
@torch.no_grad()
def generate_image(
    input_image, seed: int = 42, guidance_scale: float = 2.0, num_inference_steps: int = 50, is_upscale: bool = False
):
    # Configure scheduler
    scheduler = EulerDiscreteScheduler.from_pretrained(path_scheduler)
    scheduler.is_scale_input_called = True  # suppress warning
    scheduler.set_timesteps(num_inference_steps)

    # Set seed for reproducibility
    generator = torch.Generator(device=device).manual_seed(seed)
    x = torch.randn(1, 4, 64, 64, generator=generator, device=device)

    # Process input image
    cond_image = img_enc_transform(read_image(input_image))
    inputs = {k: v.to(img_enc.device) for k, v in img_processor(images=cond_image, return_tensors="pt").items()}
    cond_emb = img_enc(**inputs).last_hidden_state.to(device)

    # Prepare unconditioned embeddings (only if guidance is enabled)
    uncond_emb = torch.zeros_like(cond_emb) if guidance_scale > 1 else None

    # Diffusion denoising loop with mixed precision for efficiency
    with torch.autocast(device):
        for t in scheduler.timesteps:
            if guidance_scale > 1:
                # Classifier-Free Guidance (CFG)
                noise_pred = net(torch.cat([x] * 2), t, torch.cat([uncond_emb, cond_emb])).chunk(2)
                noise_pred = noise_pred[0] + guidance_scale * (noise_pred[1] - noise_pred[0])
            else:
                # Standard prediction
                noise_pred = net(x, t, cond_emb)

            # Scheduler step
            scheduler_output = scheduler.step(noise_pred, t, x)
            x = scheduler_output.prev_sample

    # Decode predictions from latent space
    decoded = vae.decode(1 / 0.18215 * scheduler_output.pred_original_sample).sample
    images = (decoded / 2 + 0.5).cpu()

    # Create grid
    grid = make_grid(images, nrow=len(images), normalize=True, scale_each=True)
    output_image = transforms.ToPILImage()(grid)

    # Optionally upscale the output image
    if is_upscale:
        output_image = upscaler(output_image)

    return output_image


title = "Virtual Try-Off Generator"
description = r"""
This is the demo of the paper <a href="https://arxiv.org/abs/2411.18350">TryOffDiff: Virtual-Try-Off via High-Fidelity Garment Reconstruction using Diffusion Models</a>.
<br>Upload an image of a clothed individual to generate a standardized garment image using TryOffDiff.
<br> Check out the <a href="https://rizavelioglu.github.io/tryoffdiff/">project page</a> for more information.
"""
article = r"""
Example images are sampled from the `VITON-HD-test` set, which the models did not see during training.

<br>**Citation** <br>If you find our work useful in your research, please consider giving a star ⭐ and
a citation:
```
@article{velioglu2024tryoffdiff,
  title     = {TryOffDiff: Virtual-Try-Off via High-Fidelity Garment Reconstruction using Diffusion Models},
  author    = {Velioglu, Riza and Bevandic, Petra and Chan, Robin and Hammer, Barbara},
  journal   = {arXiv},
  year      = {2024},
  note      = {\url{https://doi.org/nt3n}}
}
```
"""
examples = [[f"examples/{img_filename}", 42, 2.0, 20, False] for img_filename in sorted(os.listdir("examples/"))]

# Create Gradio App
demo = gr.Interface(
    fn=generate_image,
    inputs=[
        gr.Image(type="filepath", label="Reference Image", height=1024, width=1024),
        gr.Slider(value=42, minimum=0, maximum=1e6, step=1, label="Seed"),
        gr.Slider(
            value=2.0,
            minimum=1,
            maximum=5,
            step=0.5,
            label="Guidance Scale(s)",
            info="No guidance applied at s=1, hence faster inference.",
        ),
        gr.Slider(value=20, minimum=0, maximum=1000, step=10, label="# of Inference Steps"),
        gr.Checkbox(
            value=False, label="Upscale Output", info="Upscale output by 4x (2048x2048) using an off-the-shelf model."
        ),
    ],
    outputs=gr.Image(type="pil", label="Generated Garment", height=1024, width=1024),
    title=title,
    description=description,
    article=article,
    examples=examples,
    examples_per_page=4,
    submit_btn="Generate",
)

demo.launch()