File size: 5,204 Bytes
95abc0b
 
64cd544
95abc0b
64cd544
 
 
 
95abc0b
 
 
 
64cd544
95abc0b
 
64cd544
95abc0b
64cd544
95abc0b
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
64cd544
 
 
 
 
 
 
95abc0b
6d2b0a3
 
 
 
 
 
 
95abc0b
 
64cd544
 
 
6d2b0a3
 
 
64cd544
95abc0b
 
64cd544
 
 
 
6d2b0a3
64cd544
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
95abc0b
64cd544
 
 
95abc0b
 
 
 
6d2b0a3
 
 
 
95abc0b
 
 
 
 
 
 
 
64cd544
 
 
 
 
 
6d2b0a3
 
95abc0b
 
6d2b0a3
 
 
95abc0b
6d2b0a3
 
64cd544
 
95abc0b
6d2b0a3
95abc0b
 
 
64cd544
95abc0b
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
import os
import random
import shutil
import tempfile
import zipfile

import gradio as gr
from huggingface_hub import HfApi
from pdf2image import convert_from_path
from PyPDF2 import PdfReader


def pdf_to_images(pdf_files, sample_size, temp_dir, progress=gr.Progress()):
    if not os.path.exists(temp_dir):
        os.makedirs(temp_dir)
    progress(0, desc="Starting conversion")
    all_images = []
    for pdf_file in progress.tqdm(pdf_files, desc="Converting PDFs"):
        pdf_path = pdf_file.name
        pdf = PdfReader(pdf_path)
        total_pages = len(pdf.pages)

        # Determine the number of pages to convert
        pages_to_convert = (
            total_pages if sample_size == 0 else min(sample_size, total_pages)
        )

        # Select random pages if sampling
        if sample_size > 0 and sample_size < total_pages:
            selected_pages = sorted(
                random.sample(range(1, total_pages + 1), pages_to_convert)
            )
        else:
            selected_pages = range(1, total_pages + 1)

        # Convert selected PDF pages to images
        for page_num in selected_pages:
            images = convert_from_path(
                pdf_path, first_page=page_num, last_page=page_num
            )
            for image in images:
                image_path = os.path.join(
                    temp_dir, f"{os.path.basename(pdf_path)}_page_{page_num}.jpg"
                )
                image.save(image_path, "JPEG")
                all_images.append(image_path)

    return all_images, f"Saved {len(all_images)} images to temporary directory"


def process_pdfs(
    pdf_files,
    sample_size,
    hf_repo,
    oauth_token: gr.OAuthToken | None,
    progress=gr.Progress(),
):
    if not pdf_files:
        return (
            None,
            None,
            gr.Markdown(
                "⚠️ No PDF files uploaded. Please upload at least one PDF file."
            ),
        )

    if oauth_token is None:
        return (
            None,
            None,
            gr.Markdown(
                "⚠️ Not logged in to Hugging Face. Please log in to upload to a Hugging Face dataset."
            ),
        )

    try:
        temp_dir = tempfile.mkdtemp()
        images_dir = os.path.join(temp_dir, "images")
        os.makedirs(images_dir)

        progress(0, desc="Starting PDF processing")
        images, message = pdf_to_images(pdf_files, sample_size, images_dir)

        # Create a zip file of the images
        zip_path = os.path.join(temp_dir, "converted_images.zip")
        with zipfile.ZipFile(zip_path, "w") as zipf:
            progress(0, desc="Zipping images")
            for image in progress.tqdm(images, desc="Zipping images"):
                zipf.write(image, os.path.basename(image))

        if hf_repo:
            try:
                hf_api = HfApi(token=oauth_token.token)
                hf_api.create_repo(
                    hf_repo,
                    repo_type="dataset",
                )
                hf_api.upload_folder(
                    folder_path=images_dir,
                    repo_id=hf_repo,
                    repo_type="dataset",
                    path_in_repo="images",
                )
                message += f"\nUploaded images to Hugging Face repo: {hf_repo}/images"
            except Exception as e:
                message += f"\nFailed to upload to Hugging Face: {str(e)}"

        return images, zip_path, message
    except Exception as e:
        if "temp_dir" in locals():
            shutil.rmtree(temp_dir)
        return None, None, f"An error occurred: {str(e)}"


# Define the Gradio interface
with gr.Blocks() as demo:
    gr.HTML(
        """<h1 style='text-align: center;'> PDFs to Page Images Converter</h1>
        <center><i> &#128193; Convert PDFs to an image dataset &#128193; </i></center>"""
    )
    gr.Markdown(
        "Upload PDF(s), convert pages to images, and optionally upload them to a Hugging Face repo. If a sample size is specified, random pages will be selected."
    )

    with gr.Row():
        gr.LoginButton(size="sm")

    with gr.Row():
        pdf_files = gr.File(
            file_count="multiple", label="Upload PDF(s)", file_types=["*.pdf"]
        )
    with gr.Row():
        sample_size = gr.Number(
            value=None,
            label="Pages per PDF (0 for all pages)",
            info="Specify how many pages to convert from each PDF. Use 0 to convert all pages.",
        )
        hf_repo = gr.Textbox(
            label="Hugging Face Repo",
            placeholder="username/repo-name",
            info="Enter the Hugging Face repository name in the format 'username/repo-name'",
        )
    with gr.Accordion("View converted images", open=False):
        output_gallery = gr.Gallery(label="Converted Images")
    status_text = gr.Markdown(label="Status")
    download_button = gr.File(label="Download Converted Images")

    submit_button = gr.Button("Convert PDFs to page images")
    submit_button.click(
        process_pdfs,
        inputs=[pdf_files, sample_size, hf_repo],
        outputs=[output_gallery, download_button, status_text],
    )

# Launch the app
demo.launch(debug=True)