Spaces:
Sleeping
Sleeping
File size: 7,157 Bytes
04c25c5 0c3f7c7 04c25c5 9b9128d 0c3f7c7 1d73b44 0c3f7c7 d753c71 e9b47ff d786de6 e9b47ff 8686afb e9b47ff 19ac70e f74448c 19ac70e f74448c 8686afb f74448c e9b47ff 6e0c63c 1d73b44 6e0c63c 369dc1f cb18d46 2a37133 04c25c5 6e0c63c cb18d46 04c25c5 5d52fdf 6e0c63c f74448c 5d52fdf 32f8fd0 6e0c63c 32f8fd0 6e0c63c 04c25c5 fe8c2db 04c25c5 49e3627 6e0c63c cb18d46 5d52fdf 04c25c5 6e0c63c 04c25c5 0c3f7c7 d7942b7 fe8c2db 04c25c5 6e0c63c 34a59de 6b083b8 04c25c5 71a4c63 6b083b8 04c25c5 fe8c2db 6b083b8 fe8c2db db4476f fe8c2db 6e0c63c 0c3f7c7 71a4c63 0c3f7c7 8debc62 6e0c63c 8debc62 d7942b7 d0d4c9d |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 |
import gradio as gr
from gradio_client import Client
from huggingface_hub import InferenceClient
import random
ss_client = Client("https://omnibus-html-image-current-tab.hf.space/")
models=[
"google/gemma-7b",
"google/gemma-7b-it",
"google/gemma-2b",
"google/gemma-2b-it"
]
clients=[
InferenceClient(models[0]),
InferenceClient(models[1]),
InferenceClient(models[2]),
InferenceClient(models[3]),
]
def compress_history(history,client_choice,seed,temp,tokens,top_p,rep_p):
client=clients[int(client_choice)-1]
COMPRESS_HISTORY="""You are an Information Summarizer Agent. Your duty is to summarize the following information into a more concise format with far less words.
Retain all the main points and provide a brief and concise summary of the conversation.
Converstion:
{history}"""
print("COMPRESSING")
formatted_prompt=f"{COMPRESS_HISTORY.format(history=history)}"
generate_kwargs = dict(
temperature=temp,
max_new_tokens=1024,
top_p=top_p,
repetition_penalty=rep_p,
do_sample=True,
seed=seed,
)
stream = client.text_generation(formatted_prompt, **generate_kwargs, stream=True, details=True, return_full_text=False)
output = ""
for response in stream:
output += response.token.text
return output
def format_prompt(message, history):
prompt = ""
if history:
#<start_of_turn>userHow does the brain work?<end_of_turn><start_of_turn>model
for user_prompt, bot_response in history:
prompt += f"{user_prompt}\n"
#print(prompt)
prompt += f"{bot_response}\n"
#print(prompt)
prompt += f"<start_of_turn>user{message}<end_of_turn><start_of_turn>model"
#print(prompt)
return prompt
result = []
def chat_inf(system_prompt,prompt,history,memory,client_choice,seed,temp,tokens,top_p,rep_p,chat_mem):
#token max=8192
hist_len=0
client=clients[int(client_choice)-1]
if not history:
history = []
hist_len=0
if history:
for ea in history[0-chat_mem:]:
hist_len+=len(str(ea))
print(hist_len)
in_len=len(system_prompt+prompt)+hist_len
print("\n######### HIST "+str(in_len))
print("\n######### TOKENS "+str(tokens))
if (in_len+tokens) > 8000:
yield [(prompt,"Wait. I need to compress our Chat history...")]
hist=compress_history(history[-5:],client_choice,seed,temp,tokens,top_p,rep_p)
yield [(prompt,"History has been compressed, processing request...")]
history = [(prompt,hist)]
generate_kwargs = dict(
temperature=temp,
max_new_tokens=tokens,
top_p=top_p,
repetition_penalty=rep_p,
do_sample=True,
seed=seed,
)
#formatted_prompt=prompt
formatted_prompt = format_prompt(f"{system_prompt}, {prompt}", history[0-chat_mem:])
print("\n######### PROMPT "+str(len(formatted_prompt)))
stream = client.text_generation(formatted_prompt, **generate_kwargs, stream=True, details=True, return_full_text=False)
output = ""
for response in stream:
output += response.token.text
yield [(prompt,output)]
history.append((prompt,output))
memory=history
yield history,memory
def get_screenshot(chat: list,height=5000,width=600,chatblock=[],theme="light",wait=3000,header=True):
print(chatblock)
tog = 0
if chatblock:
tog = 3
result = ss_client.predict(str(chat),height,width,chatblock,header,theme,wait,api_name="/run_script")
out = f'https://omnibus-html-image-current-tab.hf.space/file={result[tog]}'
print(out)
return out
def clear_fn():
return None,None,None
rand_val=random.randint(1,1111111111111111)
def check_rand(inp,val):
if inp==True:
return gr.Slider(label="Seed", minimum=1, maximum=1111111111111111, value=random.randint(1,1111111111111111))
else:
return gr.Slider(label="Seed", minimum=1, maximum=1111111111111111, value=int(val))
with gr.Blocks() as app:
memory=gr.State()
gr.HTML("""<center><h1 style='font-size:xx-large;'>Google Gemma Models</h1><br><h3>running on Huggingface Inference Client</h3><br><h7>EXPERIMENTAL""")
chat_b = gr.Chatbot(height=500)
with gr.Group():
with gr.Row():
with gr.Column(scale=3):
inp = gr.Textbox(label="Prompt")
sys_inp = gr.Textbox(label="System Prompt (optional)")
with gr.Row():
with gr.Column(scale=2):
btn = gr.Button("Chat")
with gr.Column(scale=1):
with gr.Group():
stop_btn=gr.Button("Stop")
clear_btn=gr.Button("Clear")
client_choice=gr.Dropdown(label="Models",type='index',choices=[c for c in models],value=models[0],interactive=True)
with gr.Column(scale=1):
with gr.Group():
rand = gr.Checkbox(label="Random Seed", value=True)
seed=gr.Slider(label="Seed", minimum=1, maximum=1111111111111111,step=1, value=rand_val)
tokens = gr.Slider(label="Max new tokens",value=3840,minimum=0,maximum=8000,step=64,interactive=True, visible=True,info="The maximum number of tokens")
temp=gr.Slider(label="Temperature",step=0.01, minimum=0.01, maximum=1.0, value=0.9)
top_p=gr.Slider(label="Top-P",step=0.01, minimum=0.01, maximum=1.0, value=0.9)
rep_p=gr.Slider(label="Repetition Penalty",step=0.1, minimum=0.1, maximum=2.0, value=1.0)
chat_mem=gr.Number(label="Chat Memory", info="Number of previous chats to retain",value=5)
with gr.Accordion(label="Screenshot",open=False):
with gr.Row():
with gr.Column(scale=3):
im_btn=gr.Button("Screenshot")
img=gr.Image(type='filepath')
with gr.Column(scale=1):
with gr.Row():
im_height=gr.Number(label="Height",value=5000)
im_width=gr.Number(label="Width",value=500)
wait_time=gr.Number(label="Wait Time",value=3000)
theme=gr.Radio(label="Theme", choices=["light","dark"],value="light")
chatblock=gr.Dropdown(label="Chatblocks",info="Choose specific blocks of chat",choices=[c for c in range(1,40)],multiselect=True)
im_go=im_btn.click(get_screenshot,[chat_b,im_height,im_width,chatblock,theme,wait_time],img)
chat_sub=inp.submit(check_rand,[rand,seed],seed).then(chat_inf,[sys_inp,inp,chat_b,client_choice,seed,temp,tokens,top_p,rep_p,chat_mem],chat_b)
go=btn.click(check_rand,[rand,seed],seed).then(chat_inf,[sys_inp,inp,chat_b,memory,client_choice,seed,temp,tokens,top_p,rep_p,chat_mem],[chat_b,memory])
stop_btn.click(None,None,None,cancels=[go,im_go,chat_sub])
clear_btn.click(clear_fn,None,[inp,sys_inp,chat_b])
app.queue(default_concurrency_limit=10).launch() |