File size: 6,328 Bytes
6065472
 
 
 
 
 
 
 
 
 
 
 
 
487e498
6065472
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
import math

import numpy as np
import torch
import torch.nn as nn

from torch.nn.utils.rnn import PackedSequence, pack_padded_sequence, pad_packed_sequence


def sort_pack_padded_sequence(input, lengths):
    sorted_lengths, indices = torch.sort(lengths, descending=True)
    tmp = pack_padded_sequence(input[indices], sorted_lengths.cpu(), batch_first=True)
    inv_ix = indices.clone()
    inv_ix[indices] = torch.arange(0, len(indices)).type_as(inv_ix)
    return tmp, inv_ix

def pad_unsort_packed_sequence(input, inv_ix):
    tmp, _ = pad_packed_sequence(input, batch_first=True)
    tmp = tmp[inv_ix]
    return tmp

def pack_wrapper(module, attn_feats, attn_feat_lens):
    packed, inv_ix = sort_pack_padded_sequence(attn_feats, attn_feat_lens)
    if isinstance(module, torch.nn.RNNBase):
        return pad_unsort_packed_sequence(module(packed)[0], inv_ix)
    else:
        return pad_unsort_packed_sequence(PackedSequence(module(packed[0]), packed[1]), inv_ix)

def generate_length_mask(lens, max_length=None):
    lens = torch.as_tensor(lens)
    N = lens.size(0)
    if max_length is None:
        max_length = max(lens)
        if isinstance(max_length, torch.Tensor):
            max_length = max_length.item()
    idxs = torch.arange(max_length).repeat(N).view(N, max_length)
    idxs = idxs.to(lens.device)
    mask = (idxs < lens.view(-1, 1))
    return mask

def mean_with_lens(features, lens):
    """
    features: [N, T, ...] (assume the second dimension represents length)
    lens: [N,]
    """
    lens = torch.as_tensor(lens)
    if max(lens) != features.size(1):
        max_length = features.size(1)
        mask = generate_length_mask(lens, max_length)
    else:
        mask = generate_length_mask(lens)
    mask = mask.to(features.device) # [N, T]

    while mask.ndim < features.ndim:
        mask = mask.unsqueeze(-1)
    feature_mean = features * mask
    feature_mean = feature_mean.sum(1)
    while lens.ndim < feature_mean.ndim:
        lens = lens.unsqueeze(1)
    feature_mean = feature_mean / lens.to(features.device)
    # feature_mean = features * mask.unsqueeze(-1)
    # feature_mean = feature_mean.sum(1) / lens.unsqueeze(1).to(features.device)
    return feature_mean

def max_with_lens(features, lens):
    """
    features: [N, T, ...] (assume the second dimension represents length)
    lens: [N,]
    """
    lens = torch.as_tensor(lens)
    if max(lens) != features.size(1):
        max_length = features.size(1)
        mask = generate_length_mask(lens, max_length)
    else:
        mask = generate_length_mask(lens)
    mask = mask.to(features.device) # [N, T]

    feature_max = features.clone()
    feature_max[~mask] = float("-inf")
    feature_max, _ = feature_max.max(1)
    return feature_max

def repeat_tensor(x, n):
    return x.unsqueeze(0).repeat(n, *([1] * len(x.shape)))

def init(m, method="kaiming"):
    if isinstance(m, (nn.Conv2d, nn.Conv1d)):
        if method == "kaiming":
            nn.init.kaiming_uniform_(m.weight)
        elif method == "xavier":
            nn.init.xavier_uniform_(m.weight)
        else:
            raise Exception(f"initialization method {method} not supported")
        if m.bias is not None:
            nn.init.constant_(m.bias, 0)
    elif isinstance(m, (nn.BatchNorm2d, nn.BatchNorm1d)):
        nn.init.constant_(m.weight, 1)
        if m.bias is not None:
            nn.init.constant_(m.bias, 0)
    elif isinstance(m, nn.Linear):
        if method == "kaiming":
            nn.init.kaiming_uniform_(m.weight)
        elif method == "xavier":
            nn.init.xavier_uniform_(m.weight)
        else:
            raise Exception(f"initialization method {method} not supported")
        if m.bias is not None:
            nn.init.constant_(m.bias, 0)
    elif isinstance(m, nn.Embedding):
        if method == "kaiming":
            nn.init.kaiming_uniform_(m.weight)
        elif method == "xavier":
            nn.init.xavier_uniform_(m.weight)
        else:
            raise Exception(f"initialization method {method} not supported")

def compute_batch_score(decode_res,
                        key2refs,
                        keys,
                        start_idx,
                        end_idx,
                        vocabulary,
                        scorer):
    """
    Args:
        decode_res: decoding results of model, [N, max_length]
        key2refs: references of all samples, dict(<key> -> [ref_1, ref_2, ..., ref_n]
        keys: keys of this batch, used to match decode results and refs
    Return:
        scores of this batch, [N,]
    """

    if scorer is None:
        from pycocoevalcap.cider.cider import Cider
        scorer = Cider()

    hypothesis = {}
    references = {}

    for i in range(len(keys)):

        if keys[i] in hypothesis.keys():
            continue

        # prepare candidate sentence
        candidate = []
        for w_t in decode_res[i]:
            if w_t == start_idx:
                continue
            elif w_t == end_idx:
                break
            candidate.append(vocabulary.idx2word[w_t])

        hypothesis[keys[i]] = [" ".join(candidate), ]

        # prepare reference sentences
        references[keys[i]] = key2refs[keys[i]]

    score, scores = scorer.compute_score(references, hypothesis)
    key2score = {key: scores[i] for i, key in enumerate(references.keys())}
    results = np.zeros(decode_res.shape[0])
    for i in range(decode_res.shape[0]):
        results[i] = key2score[keys[i]]
    return results 


class PositionalEncoding(nn.Module):

    def __init__(self, d_model, dropout=0.1, max_len=100):
        super(PositionalEncoding, self).__init__()
        self.dropout = nn.Dropout(p=dropout)

        pe = torch.zeros(max_len, d_model)
        position = torch.arange(0, max_len, dtype=torch.float).unsqueeze(1)
        div_term = torch.exp(torch.arange(0, d_model, 2).float() * \
            (-math.log(10000.0) / d_model))
        pe[:, 0::2] = torch.sin(position * div_term)
        pe[:, 1::2] = torch.cos(position * div_term)
        pe = pe.unsqueeze(0).transpose(0, 1)
        # self.register_buffer("pe", pe)
        self.register_parameter("pe", nn.Parameter(pe, requires_grad=False))

    def forward(self, x):
        # x: [T, N, E]
        x = x + self.pe[:x.size(0), :]
        return self.dropout(x)