File size: 2,364 Bytes
f92d1a9
839621c
f92d1a9
 
 
 
 
 
 
839621c
f92d1a9
839621c
f92d1a9
839621c
f92d1a9
8c543d4
f92d1a9
 
 
 
 
f474299
8c543d4
839621c
 
 
 
f92d1a9
 
839621c
f92d1a9
 
839621c
 
f92d1a9
 
 
839621c
f92d1a9
 
839621c
f92d1a9
 
 
 
 
839621c
f92d1a9
839621c
f92d1a9
 
 
 
839621c
f92d1a9
 
 
839621c
f92d1a9
 
 
 
839621c
f92d1a9
 
 
 
 
839621c
f92d1a9
 
 
839621c
f92d1a9
 
 
 
839621c
f92d1a9
 
 
 
 
839621c
f92d1a9
 
 
811432c
f92d1a9
811432c
 
f92d1a9
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
import streamlit as st

from defaults import (
    PROJECT_NAME,
    ARGILLA_SPACE_REPO_ID,
    DATASET_REPO_ID,
    ARGILLA_URL,
    PROJECT_SPACE_REPO_ID,
    DIBT_PARENT_APP_URL,
)
from utils import project_sidebar

st.set_page_config("Domain Data Grower", page_icon="πŸ§‘β€πŸŒΎ")

project_sidebar()

if PROJECT_NAME == "DEFAULT_DOMAIN":
    st.warning(
        "Please set up the project configuration in the parent app before proceeding."
    )
    st.stop()


st.header("πŸ§‘β€πŸŒΎ Domain Data Grower")
st.divider()

st.markdown(
    """
## 🌱 Create a dataset seed for aligning models to a specific domain

This app helps you create a dataset seed for building diverse domain-specific datasets for aligning models.
Alignment datasets are used to fine-tune models to a specific domain or task, but as yet, there's a shortage of diverse datasets for this purpose.
"""
)
st.markdown(
    """
## 🚜 How it works

You can create a dataset seed by defining the domain expertise, perspectives, topics, and examples for your domain-specific dataset. 
The dataset seed is then used to generate synthetic data for training a language model.

"""
)
st.markdown(
    """
## πŸ—ΊοΈ The process

### Step 1: ~~Setup the project~~

~~Define the project details, including the project name, domain, and API credentials. Create Dataset Repo on the Hub.~~
"""
)
st.link_button("πŸš€ ~~Setup Project via the parent app~~", DIBT_PARENT_APP_URL)

st.markdown(
    """
### Step 2: Describe the Domain

Define the domain expertise, perspectives, topics, and examples for your domain-specific dataset. 
You can collaborate with domain experts to define the domain expertise and perspectives.
"""
)

st.page_link(
    "pages/2_πŸ‘©πŸΌβ€πŸ”¬ Describe Domain.py",
    label="Describe Domain",
    icon="πŸ‘©πŸΌβ€πŸ”¬",
)

st.markdown(
    """
### Step 3: Generate Synthetic Data

Use distilabel to generate synthetic data for your domain-specific dataset. 
You can run the pipeline locally or in this space to generate synthetic data.
"""
)

st.page_link(
    "pages/3_🌱 Generate Dataset.py",
    label="Generate Dataset",
    icon="🌱",
)

st.markdown(
    """
### Step 4: Review the Dataset

Use Argilla to review the generated synthetic data and provide feedback on the quality of the data.


"""
)
st.link_button("πŸ” Review the dataset in Argilla", ARGILLA_URL)