File size: 11,071 Bytes
f590b07
 
d336c38
30841fb
f590b07
 
 
3c9b48f
d336c38
f590b07
 
d336c38
 
39840e5
f590b07
3c9b48f
39840e5
d336c38
3c9b48f
 
f590b07
3c9b48f
 
a23d91c
 
 
 
 
 
 
 
f590b07
 
d336c38
 
 
30841fb
 
d336c38
 
 
a23d91c
 
d336c38
30841fb
39840e5
 
 
 
f590b07
39840e5
 
f590b07
 
d336c38
 
 
f590b07
 
 
 
d336c38
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
39840e5
3c9b48f
 
 
 
 
 
 
39840e5
f590b07
39840e5
 
30841fb
3c9b48f
 
d336c38
 
39840e5
d336c38
 
 
 
 
3c9b48f
d336c38
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
f590b07
 
3c9b48f
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
f590b07
 
3c9b48f
 
 
 
 
 
 
d336c38
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
3c9b48f
d336c38
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
f590b07
d336c38
 
30841fb
3c9b48f
 
d336c38
3c9b48f
 
 
 
 
 
30841fb
 
d336c38
 
3c9b48f
d336c38
 
3c9b48f
 
 
 
 
 
d336c38
f590b07
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
from typing import List

import os
import cv2
import gradio as gr
import numpy as np
import supervision as sv
import torch
from tqdm import tqdm
from inference.models import YOLOWorld

from utils.efficient_sam import load, inference_with_boxes
from utils.video import generate_file_name, calculate_end_frame_index, create_directory

MARKDOWN = """
# YOLO-World + EfficientSAM 🔥

This is a demo of zero-shot object detection and instance segmentation using 
[YOLO-World](https://github.com/AILab-CVC/YOLO-World) and 
[EfficientSAM](https://github.com/yformer/EfficientSAM).

Powered by Roboflow [Inference](https://github.com/roboflow/inference) and 
[Supervision](https://github.com/roboflow/supervision).

❗ **Don't give up right away if YOLO-World doesn't detect the objects you are looking 
for on the first try.** Use the `Configuration` tab and experiment with 
`confidence_threshold` and `iou_threshold`. YOLO-World tends to return low `confidence` 
values for objects outside the 
[COCO](https://universe.roboflow.com/microsoft/coco) dataset. Check out this
[notebook](https://supervision.roboflow.com/develop/notebooks/zero-shot-object-detection-with-yolo-world)
to learn more about YOLO-World's prompting.
"""

RESULTS = "results"

IMAGE_EXAMPLES = [
    ['https://media.roboflow.com/dog.jpeg', 'dog, eye, nose, tongue, car', 0.005, 0.1, True, False, False],
]
VIDEO_EXAMPLES = [
    ['https://media.roboflow.com/supervision/video-examples/croissant-1280x720.mp4', 'croissant', 0.01, 0.2, False, False, False],
    ['https://media.roboflow.com/supervision/video-examples/suitcases-1280x720.mp4', 'suitcase', 0.1, 0.2, False, False, False],
    ['https://media.roboflow.com/supervision/video-examples/tokyo-walk-1280x720.mp4', 'woman walking', 0.1, 0.2, False, False, False],
    ['https://media.roboflow.com/supervision/video-examples/wooly-mammoth-1280x720.mp4', 'mammoth', 0.01, 0.2, False, False, False],
]

DEVICE = torch.device("cuda" if torch.cuda.is_available() else "cpu")
EFFICIENT_SAM_MODEL = load(device=DEVICE)
YOLO_WORLD_MODEL = YOLOWorld(model_id="yolo_world/l")

BOUNDING_BOX_ANNOTATOR = sv.BoundingBoxAnnotator()
MASK_ANNOTATOR = sv.MaskAnnotator()
LABEL_ANNOTATOR = sv.LabelAnnotator()


create_directory(directory_path=RESULTS)


def process_categories(categories: str) -> List[str]:
    return [category.strip() for category in categories.split(',')]


def annotate_image(
    input_image: np.ndarray,
    detections: sv.Detections,
    categories: List[str],
    with_confidence: bool = False,
) -> np.ndarray:
    labels = [
        (
            f"{categories[class_id]}: {confidence:.3f}"
            if with_confidence
            else f"{categories[class_id]}"
        )
        for class_id, confidence in
        zip(detections.class_id, detections.confidence)
    ]
    output_image = MASK_ANNOTATOR.annotate(input_image, detections)
    output_image = BOUNDING_BOX_ANNOTATOR.annotate(output_image, detections)
    output_image = LABEL_ANNOTATOR.annotate(output_image, detections, labels=labels)
    return output_image


def process_image(
    input_image: np.ndarray,
    categories: str,
    confidence_threshold: float = 0.3,
    iou_threshold: float = 0.5,
    with_segmentation: bool = True,
    with_confidence: bool = False,
    with_class_agnostic_nms: bool = False,
) -> np.ndarray:
    categories = process_categories(categories)
    YOLO_WORLD_MODEL.set_classes(categories)
    results = YOLO_WORLD_MODEL.infer(input_image, confidence=confidence_threshold)
    detections = sv.Detections.from_inference(results)
    detections = detections.with_nms(
        class_agnostic=with_class_agnostic_nms,
        threshold=iou_threshold
    )
    if with_segmentation:
        detections.mask = inference_with_boxes(
            image=input_image,
            xyxy=detections.xyxy,
            model=EFFICIENT_SAM_MODEL,
            device=DEVICE
        )
    output_image = cv2.cvtColor(input_image, cv2.COLOR_RGB2BGR)
    output_image = annotate_image(
        input_image=output_image,
        detections=detections,
        categories=categories,
        with_confidence=with_confidence
    )
    return cv2.cvtColor(output_image, cv2.COLOR_BGR2RGB)


def process_video(
    input_video: str,
    categories: str,
    confidence_threshold: float = 0.3,
    iou_threshold: float = 0.5,
    with_segmentation: bool = True,
    with_confidence: bool = False,
    with_class_agnostic_nms: bool = False,
    progress=gr.Progress(track_tqdm=True)
) -> str:
    categories = process_categories(categories)
    YOLO_WORLD_MODEL.set_classes(categories)
    video_info = sv.VideoInfo.from_video_path(input_video)
    total = calculate_end_frame_index(input_video)
    frame_generator = sv.get_video_frames_generator(
        source_path=input_video,
        end=total
    )
    result_file_name = generate_file_name(extension="mp4")
    result_file_path = os.path.join(RESULTS, result_file_name)
    with sv.VideoSink(result_file_path, video_info=video_info) as sink:
        for _ in tqdm(range(total), desc="Processing video..."):
            frame = next(frame_generator)
            results = YOLO_WORLD_MODEL.infer(frame, confidence=confidence_threshold)
            detections = sv.Detections.from_inference(results)
            detections = detections.with_nms(
                class_agnostic=with_class_agnostic_nms,
                threshold=iou_threshold
            )
            if with_segmentation:
                detections.mask = inference_with_boxes(
                    image=frame,
                    xyxy=detections.xyxy,
                    model=EFFICIENT_SAM_MODEL,
                    device=DEVICE
            )
            frame = annotate_image(
                input_image=frame,
                detections=detections,
                categories=categories,
                with_confidence=with_confidence
            )
            sink.write_frame(frame)
    return result_file_path


confidence_threshold_component = gr.Slider(
    minimum=0,
    maximum=1.0,
    value=0.3,
    step=0.01,
    label="Confidence Threshold",
    info=(
        "The confidence threshold for the YOLO-World model. Lower the threshold to "
        "reduce false negatives, enhancing the model's sensitivity to detect "
        "sought-after objects. Conversely, increase the threshold to minimize false "
        "positives, preventing the model from identifying objects it shouldn't."
    ))

iou_threshold_component = gr.Slider(
    minimum=0,
    maximum=1.0,
    value=0.5,
    step=0.01,
    label="IoU Threshold",
    info=(
        "The Intersection over Union (IoU) threshold for non-maximum suppression. "
        "Decrease the value to lessen the occurrence of overlapping bounding boxes, "
        "making the detection process stricter. On the other hand, increase the value "
        "to allow more overlapping bounding boxes, accommodating a broader range of "
        "detections."
    ))

with_segmentation_component = gr.Checkbox(
    value=True,
    label="With Segmentation",
    info=(
        "Whether to run EfficientSAM for instance segmentation."
    )
)

with_confidence_component = gr.Checkbox(
    value=False,
    label="Display Confidence",
    info=(
        "Whether to display the confidence of the detected objects."
    )
)

with_class_agnostic_nms_component = gr.Checkbox(
    value=False,
    label="Use Class-Agnostic NMS",
    info=(
        "Suppress overlapping bounding boxes across all classes."
    )
)


with gr.Blocks() as demo:
    gr.Markdown(MARKDOWN)
    with gr.Accordion("Configuration", open=False):
        confidence_threshold_component.render()
        iou_threshold_component.render()
        with gr.Row():
            with_segmentation_component.render()
            with_confidence_component.render()
            with_class_agnostic_nms_component.render()
    with gr.Tab(label="Image"):
        with gr.Row():
            input_image_component = gr.Image(
                type='numpy',
                label='Input Image'
            )
            output_image_component = gr.Image(
                type='numpy',
                label='Output Image'
            )
        with gr.Row():
            image_categories_text_component = gr.Textbox(
                label='Categories',
                placeholder='comma separated list of categories',
                scale=7
            )
            image_submit_button_component = gr.Button(
                value='Submit',
                scale=1,
                variant='primary'
            )
        gr.Examples(
            fn=process_image,
            examples=IMAGE_EXAMPLES,
            inputs=[
                input_image_component,
                image_categories_text_component,
                confidence_threshold_component,
                iou_threshold_component,
                with_segmentation_component,
                with_confidence_component,
                with_class_agnostic_nms_component
            ],
            outputs=output_image_component
        )
    with gr.Tab(label="Video"):
        with gr.Row():
            input_video_component = gr.Video(
                label='Input Video'
            )
            output_video_component = gr.Video(
                label='Output Video'
            )
        with gr.Row():
            video_categories_text_component = gr.Textbox(
                label='Categories',
                placeholder='comma separated list of categories',
                scale=7
            )
            video_submit_button_component = gr.Button(
                value='Submit',
                scale=1,
                variant='primary'
            )
        gr.Examples(
            fn=process_video,
            examples=VIDEO_EXAMPLES,
            inputs=[
                input_video_component,
                video_categories_text_component,
                confidence_threshold_component,
                iou_threshold_component,
                with_segmentation_component,
                with_confidence_component,
                with_class_agnostic_nms_component
            ],
            outputs=output_image_component
        )

    image_submit_button_component.click(
        fn=process_image,
        inputs=[
            input_image_component,
            image_categories_text_component,
            confidence_threshold_component,
            iou_threshold_component,
            with_segmentation_component,
            with_confidence_component,
            with_class_agnostic_nms_component
        ],
        outputs=output_image_component
    )
    video_submit_button_component.click(
        fn=process_video,
        inputs=[
            input_video_component,
            video_categories_text_component,
            confidence_threshold_component,
            iou_threshold_component,
            with_segmentation_component,
            with_confidence_component,
            with_class_agnostic_nms_component
        ],
        outputs=output_video_component
    )

demo.launch(debug=False, show_error=True)