Spaces:
Nymbo
/
Running on Zero

File size: 9,519 Bytes
938e515
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
#!/usr/bin/env python
# -*- encoding: utf-8 -*-

"""
@Author  :   Peike Li
@Contact :   peike.li@yahoo.com
@File    :   ocnet.py
@Time    :   8/4/19 3:36 PM
@Desc    :   
@License :   This source code is licensed under the license found in the 
             LICENSE file in the root directory of this source tree.
"""

import functools

import torch
import torch.nn as nn
from torch.autograd import Variable
from torch.nn import functional as F

from modules import InPlaceABNSync
BatchNorm2d = functools.partial(InPlaceABNSync, activation='none')


class _SelfAttentionBlock(nn.Module):
    '''
    The basic implementation for self-attention block/non-local block
    Input:
        N X C X H X W
    Parameters:
        in_channels       : the dimension of the input feature map
        key_channels      : the dimension after the key/query transform
        value_channels    : the dimension after the value transform
        scale             : choose the scale to downsample the input feature maps (save memory cost)
    Return:
        N X C X H X W
        position-aware context features.(w/o concate or add with the input)
    '''

    def __init__(self, in_channels, key_channels, value_channels, out_channels=None, scale=1):
        super(_SelfAttentionBlock, self).__init__()
        self.scale = scale
        self.in_channels = in_channels
        self.out_channels = out_channels
        self.key_channels = key_channels
        self.value_channels = value_channels
        if out_channels == None:
            self.out_channels = in_channels
        self.pool = nn.MaxPool2d(kernel_size=(scale, scale))
        self.f_key = nn.Sequential(
            nn.Conv2d(in_channels=self.in_channels, out_channels=self.key_channels,
                      kernel_size=1, stride=1, padding=0),
            InPlaceABNSync(self.key_channels),
        )
        self.f_query = self.f_key
        self.f_value = nn.Conv2d(in_channels=self.in_channels, out_channels=self.value_channels,
                                 kernel_size=1, stride=1, padding=0)
        self.W = nn.Conv2d(in_channels=self.value_channels, out_channels=self.out_channels,
                           kernel_size=1, stride=1, padding=0)
        nn.init.constant(self.W.weight, 0)
        nn.init.constant(self.W.bias, 0)

    def forward(self, x):
        batch_size, h, w = x.size(0), x.size(2), x.size(3)
        if self.scale > 1:
            x = self.pool(x)

        value = self.f_value(x).view(batch_size, self.value_channels, -1)
        value = value.permute(0, 2, 1)
        query = self.f_query(x).view(batch_size, self.key_channels, -1)
        query = query.permute(0, 2, 1)
        key = self.f_key(x).view(batch_size, self.key_channels, -1)

        sim_map = torch.matmul(query, key)
        sim_map = (self.key_channels ** -.5) * sim_map
        sim_map = F.softmax(sim_map, dim=-1)

        context = torch.matmul(sim_map, value)
        context = context.permute(0, 2, 1).contiguous()
        context = context.view(batch_size, self.value_channels, *x.size()[2:])
        context = self.W(context)
        if self.scale > 1:
            context = F.upsample(input=context, size=(h, w), mode='bilinear', align_corners=True)
        return context


class SelfAttentionBlock2D(_SelfAttentionBlock):
    def __init__(self, in_channels, key_channels, value_channels, out_channels=None, scale=1):
        super(SelfAttentionBlock2D, self).__init__(in_channels,
                                                   key_channels,
                                                   value_channels,
                                                   out_channels,
                                                   scale)


class BaseOC_Module(nn.Module):
    """
    Implementation of the BaseOC module
    Parameters:
        in_features / out_features: the channels of the input / output feature maps.
        dropout: we choose 0.05 as the default value.
        size: you can apply multiple sizes. Here we only use one size.
    Return:
        features fused with Object context information.
    """

    def __init__(self, in_channels, out_channels, key_channels, value_channels, dropout, sizes=([1])):
        super(BaseOC_Module, self).__init__()
        self.stages = []
        self.stages = nn.ModuleList(
            [self._make_stage(in_channels, out_channels, key_channels, value_channels, size) for size in sizes])
        self.conv_bn_dropout = nn.Sequential(
            nn.Conv2d(2 * in_channels, out_channels, kernel_size=1, padding=0),
            InPlaceABNSync(out_channels),
            nn.Dropout2d(dropout)
        )

    def _make_stage(self, in_channels, output_channels, key_channels, value_channels, size):
        return SelfAttentionBlock2D(in_channels,
                                    key_channels,
                                    value_channels,
                                    output_channels,
                                    size)

    def forward(self, feats):
        priors = [stage(feats) for stage in self.stages]
        context = priors[0]
        for i in range(1, len(priors)):
            context += priors[i]
        output = self.conv_bn_dropout(torch.cat([context, feats], 1))
        return output


class BaseOC_Context_Module(nn.Module):
    """
    Output only the context features.
    Parameters:
        in_features / out_features: the channels of the input / output feature maps.
        dropout: specify the dropout ratio
        fusion: We provide two different fusion method, "concat" or "add"
        size: we find that directly learn the attention weights on even 1/8 feature maps is hard.
    Return:
        features after "concat" or "add"
    """

    def __init__(self, in_channels, out_channels, key_channels, value_channels, dropout, sizes=([1])):
        super(BaseOC_Context_Module, self).__init__()
        self.stages = []
        self.stages = nn.ModuleList(
            [self._make_stage(in_channels, out_channels, key_channels, value_channels, size) for size in sizes])
        self.conv_bn_dropout = nn.Sequential(
            nn.Conv2d(in_channels, out_channels, kernel_size=1, padding=0),
            InPlaceABNSync(out_channels),
        )

    def _make_stage(self, in_channels, output_channels, key_channels, value_channels, size):
        return SelfAttentionBlock2D(in_channels,
                                    key_channels,
                                    value_channels,
                                    output_channels,
                                    size)

    def forward(self, feats):
        priors = [stage(feats) for stage in self.stages]
        context = priors[0]
        for i in range(1, len(priors)):
            context += priors[i]
        output = self.conv_bn_dropout(context)
        return output


class ASP_OC_Module(nn.Module):
    def __init__(self, features, out_features=256, dilations=(12, 24, 36)):
        super(ASP_OC_Module, self).__init__()
        self.context = nn.Sequential(nn.Conv2d(features, out_features, kernel_size=3, padding=1, dilation=1, bias=True),
                                     InPlaceABNSync(out_features),
                                     BaseOC_Context_Module(in_channels=out_features, out_channels=out_features,
                                                           key_channels=out_features // 2, value_channels=out_features,
                                                           dropout=0, sizes=([2])))
        self.conv2 = nn.Sequential(nn.Conv2d(features, out_features, kernel_size=1, padding=0, dilation=1, bias=False),
                                   InPlaceABNSync(out_features))
        self.conv3 = nn.Sequential(
            nn.Conv2d(features, out_features, kernel_size=3, padding=dilations[0], dilation=dilations[0], bias=False),
            InPlaceABNSync(out_features))
        self.conv4 = nn.Sequential(
            nn.Conv2d(features, out_features, kernel_size=3, padding=dilations[1], dilation=dilations[1], bias=False),
            InPlaceABNSync(out_features))
        self.conv5 = nn.Sequential(
            nn.Conv2d(features, out_features, kernel_size=3, padding=dilations[2], dilation=dilations[2], bias=False),
            InPlaceABNSync(out_features))

        self.conv_bn_dropout = nn.Sequential(
            nn.Conv2d(out_features * 5, out_features, kernel_size=1, padding=0, dilation=1, bias=False),
            InPlaceABNSync(out_features),
            nn.Dropout2d(0.1)
        )

    def _cat_each(self, feat1, feat2, feat3, feat4, feat5):
        assert (len(feat1) == len(feat2))
        z = []
        for i in range(len(feat1)):
            z.append(torch.cat((feat1[i], feat2[i], feat3[i], feat4[i], feat5[i]), 1))
        return z

    def forward(self, x):
        if isinstance(x, Variable):
            _, _, h, w = x.size()
        elif isinstance(x, tuple) or isinstance(x, list):
            _, _, h, w = x[0].size()
        else:
            raise RuntimeError('unknown input type')

        feat1 = self.context(x)
        feat2 = self.conv2(x)
        feat3 = self.conv3(x)
        feat4 = self.conv4(x)
        feat5 = self.conv5(x)

        if isinstance(x, Variable):
            out = torch.cat((feat1, feat2, feat3, feat4, feat5), 1)
        elif isinstance(x, tuple) or isinstance(x, list):
            out = self._cat_each(feat1, feat2, feat3, feat4, feat5)
        else:
            raise RuntimeError('unknown input type')
        output = self.conv_bn_dropout(out)
        return output