Spaces:
Nymbo
/
Running on Zero

File size: 2,512 Bytes
938e515
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
# Copyright (c) Facebook, Inc. and its affiliates.
from abc import ABCMeta, abstractmethod
from typing import Dict
import torch.nn as nn

from detectron2.layers import ShapeSpec

__all__ = ["Backbone"]


class Backbone(nn.Module, metaclass=ABCMeta):
    """
    Abstract base class for network backbones.
    """

    def __init__(self):
        """
        The `__init__` method of any subclass can specify its own set of arguments.
        """
        super().__init__()

    @abstractmethod
    def forward(self):
        """
        Subclasses must override this method, but adhere to the same return type.

        Returns:
            dict[str->Tensor]: mapping from feature name (e.g., "res2") to tensor
        """
        pass

    @property
    def size_divisibility(self) -> int:
        """
        Some backbones require the input height and width to be divisible by a
        specific integer. This is typically true for encoder / decoder type networks
        with lateral connection (e.g., FPN) for which feature maps need to match
        dimension in the "bottom up" and "top down" paths. Set to 0 if no specific
        input size divisibility is required.
        """
        return 0

    @property
    def padding_constraints(self) -> Dict[str, int]:
        """
        This property is a generalization of size_divisibility. Some backbones and training
        recipes require specific padding constraints, such as enforcing divisibility by a specific
        integer (e.g., FPN) or padding to a square (e.g., ViTDet with large-scale jitter
        in :paper:vitdet). `padding_constraints` contains these optional items like:
        {
            "size_divisibility": int,
            "square_size": int,
            # Future options are possible
        }
        `size_divisibility` will read from here if presented and `square_size` indicates the
        square padding size if `square_size` > 0.

        TODO: use type of Dict[str, int] to avoid torchscipt issues. The type of padding_constraints
        could be generalized as TypedDict (Python 3.8+) to support more types in the future.
        """
        return {}

    def output_shape(self):
        """
        Returns:
            dict[str->ShapeSpec]
        """
        # this is a backward-compatible default
        return {
            name: ShapeSpec(
                channels=self._out_feature_channels[name], stride=self._out_feature_strides[name]
            )
            for name in self._out_features
        }