Spaces:
Nymbo
/
Running on Zero

File size: 10,856 Bytes
938e515
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
# -*- coding: utf-8 -*-
# Copyright (c) Facebook, Inc. and its affiliates.

import logging
import numpy as np
import os
import tempfile
import xml.etree.ElementTree as ET
from collections import OrderedDict, defaultdict
from functools import lru_cache
import torch

from detectron2.data import MetadataCatalog
from detectron2.utils import comm
from detectron2.utils.file_io import PathManager

from .evaluator import DatasetEvaluator


class PascalVOCDetectionEvaluator(DatasetEvaluator):
    """
    Evaluate Pascal VOC style AP for Pascal VOC dataset.
    It contains a synchronization, therefore has to be called from all ranks.

    Note that the concept of AP can be implemented in different ways and may not
    produce identical results. This class mimics the implementation of the official
    Pascal VOC Matlab API, and should produce similar but not identical results to the
    official API.
    """

    def __init__(self, dataset_name):
        """
        Args:
            dataset_name (str): name of the dataset, e.g., "voc_2007_test"
        """
        self._dataset_name = dataset_name
        meta = MetadataCatalog.get(dataset_name)

        # Too many tiny files, download all to local for speed.
        annotation_dir_local = PathManager.get_local_path(
            os.path.join(meta.dirname, "Annotations/")
        )
        self._anno_file_template = os.path.join(annotation_dir_local, "{}.xml")
        self._image_set_path = os.path.join(meta.dirname, "ImageSets", "Main", meta.split + ".txt")
        self._class_names = meta.thing_classes
        assert meta.year in [2007, 2012], meta.year
        self._is_2007 = meta.year == 2007
        self._cpu_device = torch.device("cpu")
        self._logger = logging.getLogger(__name__)

    def reset(self):
        self._predictions = defaultdict(list)  # class name -> list of prediction strings

    def process(self, inputs, outputs):
        for input, output in zip(inputs, outputs):
            image_id = input["image_id"]
            instances = output["instances"].to(self._cpu_device)
            boxes = instances.pred_boxes.tensor.numpy()
            scores = instances.scores.tolist()
            classes = instances.pred_classes.tolist()
            for box, score, cls in zip(boxes, scores, classes):
                xmin, ymin, xmax, ymax = box
                # The inverse of data loading logic in `datasets/pascal_voc.py`
                xmin += 1
                ymin += 1
                self._predictions[cls].append(
                    f"{image_id} {score:.3f} {xmin:.1f} {ymin:.1f} {xmax:.1f} {ymax:.1f}"
                )

    def evaluate(self):
        """
        Returns:
            dict: has a key "segm", whose value is a dict of "AP", "AP50", and "AP75".
        """
        all_predictions = comm.gather(self._predictions, dst=0)
        if not comm.is_main_process():
            return
        predictions = defaultdict(list)
        for predictions_per_rank in all_predictions:
            for clsid, lines in predictions_per_rank.items():
                predictions[clsid].extend(lines)
        del all_predictions

        self._logger.info(
            "Evaluating {} using {} metric. "
            "Note that results do not use the official Matlab API.".format(
                self._dataset_name, 2007 if self._is_2007 else 2012
            )
        )

        with tempfile.TemporaryDirectory(prefix="pascal_voc_eval_") as dirname:
            res_file_template = os.path.join(dirname, "{}.txt")

            aps = defaultdict(list)  # iou -> ap per class
            for cls_id, cls_name in enumerate(self._class_names):
                lines = predictions.get(cls_id, [""])

                with open(res_file_template.format(cls_name), "w") as f:
                    f.write("\n".join(lines))

                for thresh in range(50, 100, 5):
                    rec, prec, ap = voc_eval(
                        res_file_template,
                        self._anno_file_template,
                        self._image_set_path,
                        cls_name,
                        ovthresh=thresh / 100.0,
                        use_07_metric=self._is_2007,
                    )
                    aps[thresh].append(ap * 100)

        ret = OrderedDict()
        mAP = {iou: np.mean(x) for iou, x in aps.items()}
        ret["bbox"] = {"AP": np.mean(list(mAP.values())), "AP50": mAP[50], "AP75": mAP[75]}
        return ret


##############################################################################
#
# Below code is modified from
# https://github.com/rbgirshick/py-faster-rcnn/blob/master/lib/datasets/voc_eval.py
# --------------------------------------------------------
# Fast/er R-CNN
# Licensed under The MIT License [see LICENSE for details]
# Written by Bharath Hariharan
# --------------------------------------------------------

"""Python implementation of the PASCAL VOC devkit's AP evaluation code."""


@lru_cache(maxsize=None)
def parse_rec(filename):
    """Parse a PASCAL VOC xml file."""
    with PathManager.open(filename) as f:
        tree = ET.parse(f)
    objects = []
    for obj in tree.findall("object"):
        obj_struct = {}
        obj_struct["name"] = obj.find("name").text
        obj_struct["pose"] = obj.find("pose").text
        obj_struct["truncated"] = int(obj.find("truncated").text)
        obj_struct["difficult"] = int(obj.find("difficult").text)
        bbox = obj.find("bndbox")
        obj_struct["bbox"] = [
            int(bbox.find("xmin").text),
            int(bbox.find("ymin").text),
            int(bbox.find("xmax").text),
            int(bbox.find("ymax").text),
        ]
        objects.append(obj_struct)

    return objects


def voc_ap(rec, prec, use_07_metric=False):
    """Compute VOC AP given precision and recall. If use_07_metric is true, uses
    the VOC 07 11-point method (default:False).
    """
    if use_07_metric:
        # 11 point metric
        ap = 0.0
        for t in np.arange(0.0, 1.1, 0.1):
            if np.sum(rec >= t) == 0:
                p = 0
            else:
                p = np.max(prec[rec >= t])
            ap = ap + p / 11.0
    else:
        # correct AP calculation
        # first append sentinel values at the end
        mrec = np.concatenate(([0.0], rec, [1.0]))
        mpre = np.concatenate(([0.0], prec, [0.0]))

        # compute the precision envelope
        for i in range(mpre.size - 1, 0, -1):
            mpre[i - 1] = np.maximum(mpre[i - 1], mpre[i])

        # to calculate area under PR curve, look for points
        # where X axis (recall) changes value
        i = np.where(mrec[1:] != mrec[:-1])[0]

        # and sum (\Delta recall) * prec
        ap = np.sum((mrec[i + 1] - mrec[i]) * mpre[i + 1])
    return ap


def voc_eval(detpath, annopath, imagesetfile, classname, ovthresh=0.5, use_07_metric=False):
    """rec, prec, ap = voc_eval(detpath,
                                annopath,
                                imagesetfile,
                                classname,
                                [ovthresh],
                                [use_07_metric])

    Top level function that does the PASCAL VOC evaluation.

    detpath: Path to detections
        detpath.format(classname) should produce the detection results file.
    annopath: Path to annotations
        annopath.format(imagename) should be the xml annotations file.
    imagesetfile: Text file containing the list of images, one image per line.
    classname: Category name (duh)
    [ovthresh]: Overlap threshold (default = 0.5)
    [use_07_metric]: Whether to use VOC07's 11 point AP computation
        (default False)
    """
    # assumes detections are in detpath.format(classname)
    # assumes annotations are in annopath.format(imagename)
    # assumes imagesetfile is a text file with each line an image name

    # first load gt
    # read list of images
    with PathManager.open(imagesetfile, "r") as f:
        lines = f.readlines()
    imagenames = [x.strip() for x in lines]

    # load annots
    recs = {}
    for imagename in imagenames:
        recs[imagename] = parse_rec(annopath.format(imagename))

    # extract gt objects for this class
    class_recs = {}
    npos = 0
    for imagename in imagenames:
        R = [obj for obj in recs[imagename] if obj["name"] == classname]
        bbox = np.array([x["bbox"] for x in R])
        difficult = np.array([x["difficult"] for x in R]).astype(bool)
        # difficult = np.array([False for x in R]).astype(bool)  # treat all "difficult" as GT
        det = [False] * len(R)
        npos = npos + sum(~difficult)
        class_recs[imagename] = {"bbox": bbox, "difficult": difficult, "det": det}

    # read dets
    detfile = detpath.format(classname)
    with open(detfile, "r") as f:
        lines = f.readlines()

    splitlines = [x.strip().split(" ") for x in lines]
    image_ids = [x[0] for x in splitlines]
    confidence = np.array([float(x[1]) for x in splitlines])
    BB = np.array([[float(z) for z in x[2:]] for x in splitlines]).reshape(-1, 4)

    # sort by confidence
    sorted_ind = np.argsort(-confidence)
    BB = BB[sorted_ind, :]
    image_ids = [image_ids[x] for x in sorted_ind]

    # go down dets and mark TPs and FPs
    nd = len(image_ids)
    tp = np.zeros(nd)
    fp = np.zeros(nd)
    for d in range(nd):
        R = class_recs[image_ids[d]]
        bb = BB[d, :].astype(float)
        ovmax = -np.inf
        BBGT = R["bbox"].astype(float)

        if BBGT.size > 0:
            # compute overlaps
            # intersection
            ixmin = np.maximum(BBGT[:, 0], bb[0])
            iymin = np.maximum(BBGT[:, 1], bb[1])
            ixmax = np.minimum(BBGT[:, 2], bb[2])
            iymax = np.minimum(BBGT[:, 3], bb[3])
            iw = np.maximum(ixmax - ixmin + 1.0, 0.0)
            ih = np.maximum(iymax - iymin + 1.0, 0.0)
            inters = iw * ih

            # union
            uni = (
                (bb[2] - bb[0] + 1.0) * (bb[3] - bb[1] + 1.0)
                + (BBGT[:, 2] - BBGT[:, 0] + 1.0) * (BBGT[:, 3] - BBGT[:, 1] + 1.0)
                - inters
            )

            overlaps = inters / uni
            ovmax = np.max(overlaps)
            jmax = np.argmax(overlaps)

        if ovmax > ovthresh:
            if not R["difficult"][jmax]:
                if not R["det"][jmax]:
                    tp[d] = 1.0
                    R["det"][jmax] = 1
                else:
                    fp[d] = 1.0
        else:
            fp[d] = 1.0

    # compute precision recall
    fp = np.cumsum(fp)
    tp = np.cumsum(tp)
    rec = tp / float(npos)
    # avoid divide by zero in case the first detection matches a difficult
    # ground truth
    prec = tp / np.maximum(tp + fp, np.finfo(np.float64).eps)
    ap = voc_ap(rec, prec, use_07_metric)

    return rec, prec, ap