Spaces:
Runtime error
Runtime error
File size: 10,567 Bytes
0b756df 226cc7a 0b756df 226cc7a 0b756df db275a2 0b756df 226cc7a 0b756df 226cc7a 0b756df 71c9afb 226cc7a 71c9afb 226cc7a 71c9afb db275a2 71c9afb 226cc7a 71c9afb 226cc7a 71c9afb 226cc7a 71c9afb 226cc7a db275a2 226cc7a db275a2 226cc7a db275a2 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 |
import os
import cv2
import time
import glob
import shutil
import platform
import datetime
import subprocess
import numpy as np
from threading import Thread
from moviepy.editor import VideoFileClip, ImageSequenceClip
from moviepy.video.io.ffmpeg_tools import ffmpeg_extract_subclip
logo_image = cv2.imread("./assets/images/logo.png", cv2.IMREAD_UNCHANGED)
quality_types = ["poor", "low", "medium", "high", "best"]
bitrate_quality_by_resolution = {
240: {"poor": "300k", "low": "500k", "medium": "800k", "high": "1000k", "best": "1200k"},
360: {"poor": "500k","low": "800k","medium": "1200k","high": "1500k","best": "2000k"},
480: {"poor": "800k","low": "1200k","medium": "2000k","high": "2500k","best": "3000k"},
720: {"poor": "1500k","low": "2500k","medium": "4000k","high": "5000k","best": "6000k"},
1080: {"poor": "2500k","low": "4000k","medium": "6000k","high": "7000k","best": "8000k"},
1440: {"poor": "4000k","low": "6000k","medium": "8000k","high": "10000k","best": "12000k"},
2160: {"poor": "8000k","low": "10000k","medium": "12000k","high": "15000k","best": "20000k"}
}
crf_quality_by_resolution = {
240: {"poor": 45, "low": 35, "medium": 28, "high": 23, "best": 20},
360: {"poor": 35, "low": 28, "medium": 23, "high": 20, "best": 18},
480: {"poor": 28, "low": 23, "medium": 20, "high": 18, "best": 16},
720: {"poor": 23, "low": 20, "medium": 18, "high": 16, "best": 14},
1080: {"poor": 20, "low": 18, "medium": 16, "high": 14, "best": 12},
1440: {"poor": 18, "low": 16, "medium": 14, "high": 12, "best": 10},
2160: {"poor": 16, "low": 14, "medium": 12, "high": 10, "best": 8}
}
def get_bitrate_for_resolution(resolution, quality):
available_resolutions = list(bitrate_quality_by_resolution.keys())
closest_resolution = min(available_resolutions, key=lambda x: abs(x - resolution))
return bitrate_quality_by_resolution[closest_resolution][quality]
def get_crf_for_resolution(resolution, quality):
available_resolutions = list(crf_quality_by_resolution.keys())
closest_resolution = min(available_resolutions, key=lambda x: abs(x - resolution))
return crf_quality_by_resolution[closest_resolution][quality]
def get_video_bitrate(video_file):
ffprobe_cmd = ['ffprobe', '-v', 'error', '-select_streams', 'v:0', '-show_entries',
'stream=bit_rate', '-of', 'default=noprint_wrappers=1:nokey=1', video_file]
result = subprocess.run(ffprobe_cmd, stdout=subprocess.PIPE)
kbps = max(int(result.stdout) // 1000, 10)
return str(kbps) + 'k'
def trim_video(video_path, output_path, start_frame, stop_frame):
video_name, _ = os.path.splitext(os.path.basename(video_path))
trimmed_video_filename = video_name + "_trimmed" + ".mp4"
temp_path = os.path.join(output_path, "trim")
os.makedirs(temp_path, exist_ok=True)
trimmed_video_file_path = os.path.join(temp_path, trimmed_video_filename)
video = VideoFileClip(video_path, fps_source="fps")
fps = video.fps
start_time = start_frame / fps
duration = (stop_frame - start_frame) / fps
bitrate = get_bitrate_for_resolution(min(*video.size), "high")
trimmed_video = video.subclip(start_time, start_time + duration)
trimmed_video.write_videofile(
trimmed_video_file_path, codec="libx264", audio_codec="aac", bitrate=bitrate,
)
trimmed_video.close()
video.close()
return trimmed_video_file_path
def open_directory(path=None):
if path is None:
return
try:
os.startfile(path)
except:
subprocess.Popen(["xdg-open", path])
class StreamerThread(object):
def __init__(self, src=0):
self.capture = cv2.VideoCapture(src)
self.capture.set(cv2.CAP_PROP_BUFFERSIZE, 2)
self.FPS = 1 / 30
self.FPS_MS = int(self.FPS * 1000)
self.thread = None
self.stopped = False
self.frame = None
def start(self):
self.thread = Thread(target=self.update, args=())
self.thread.daemon = True
self.thread.start()
def stop(self):
self.stopped = True
self.thread.join()
print("stopped")
def update(self):
while not self.stopped:
if self.capture.isOpened():
(self.status, self.frame) = self.capture.read()
time.sleep(self.FPS)
class ProcessBar:
def __init__(self, bar_length, total, before="β¬", after="π¨"):
self.bar_length = bar_length
self.total = total
self.before = before
self.after = after
self.bar = [self.before] * bar_length
self.start_time = time.time()
def get(self, index):
total = self.total
elapsed_time = time.time() - self.start_time
average_time_per_iteration = elapsed_time / (index + 1)
remaining_iterations = total - (index + 1)
estimated_remaining_time = remaining_iterations * average_time_per_iteration
self.bar[int(index / total * self.bar_length)] = self.after
info_text = f"({index+1}/{total}) {''.join(self.bar)} "
info_text += f"(ETR: {int(estimated_remaining_time // 60)} min {int(estimated_remaining_time % 60)} sec)"
return info_text
def add_logo_to_image(img, logo=logo_image):
logo_size = int(img.shape[1] * 0.1)
logo = cv2.resize(logo, (logo_size, logo_size))
if logo.shape[2] == 4:
alpha = logo[:, :, 3]
else:
alpha = np.ones_like(logo[:, :, 0]) * 255
padding = int(logo_size * 0.1)
roi = img.shape[0] - logo_size - padding, img.shape[1] - logo_size - padding
for c in range(0, 3):
img[roi[0] : roi[0] + logo_size, roi[1] : roi[1] + logo_size, c] = (
alpha / 255.0
) * logo[:, :, c] + (1 - alpha / 255.0) * img[
roi[0] : roi[0] + logo_size, roi[1] : roi[1] + logo_size, c
]
return img
def split_list_by_lengths(data, length_list):
split_data = []
start_idx = 0
for length in length_list:
end_idx = start_idx + length
sublist = data[start_idx:end_idx]
split_data.append(sublist)
start_idx = end_idx
return split_data
def merge_img_sequence_from_ref(ref_video_path, image_sequence, output_file_name):
video_clip = VideoFileClip(ref_video_path, fps_source="fps")
fps = video_clip.fps
duration = video_clip.duration
total_frames = video_clip.reader.nframes
audio_clip = video_clip.audio if video_clip.audio is not None else None
edited_video_clip = ImageSequenceClip(image_sequence, fps=fps)
if audio_clip is not None:
edited_video_clip = edited_video_clip.set_audio(audio_clip)
bitrate = get_bitrate_for_resolution(min(*edited_video_clip.size), "high")
edited_video_clip.set_duration(duration).write_videofile(
output_file_name, codec="libx264", bitrate=bitrate,
)
edited_video_clip.close()
video_clip.close()
def scale_bbox_from_center(bbox, scale_width, scale_height, image_width, image_height):
# Extract the coordinates of the bbox
x1, y1, x2, y2 = bbox
# Calculate the center point of the bbox
center_x = (x1 + x2) / 2
center_y = (y1 + y2) / 2
# Calculate the new width and height of the bbox based on the scaling factors
width = x2 - x1
height = y2 - y1
new_width = width * scale_width
new_height = height * scale_height
# Calculate the new coordinates of the bbox, considering the image boundaries
new_x1 = center_x - new_width / 2
new_y1 = center_y - new_height / 2
new_x2 = center_x + new_width / 2
new_y2 = center_y + new_height / 2
# Adjust the coordinates to ensure the bbox remains within the image boundaries
new_x1 = max(0, new_x1)
new_y1 = max(0, new_y1)
new_x2 = min(image_width - 1, new_x2)
new_y2 = min(image_height - 1, new_y2)
# Return the scaled bbox coordinates
scaled_bbox = [new_x1, new_y1, new_x2, new_y2]
return scaled_bbox
def laplacian_blending(A, B, m, num_levels=7):
assert A.shape == B.shape
assert B.shape == m.shape
height = m.shape[0]
width = m.shape[1]
size_list = np.array([4, 8, 16, 32, 64, 128, 256, 512, 1024, 2048, 4096, 8192])
size = size_list[np.where(size_list > max(height, width))][0]
GA = np.zeros((size, size, 3), dtype=np.float32)
GA[:height, :width, :] = A
GB = np.zeros((size, size, 3), dtype=np.float32)
GB[:height, :width, :] = B
GM = np.zeros((size, size, 3), dtype=np.float32)
GM[:height, :width, :] = m
gpA = [GA]
gpB = [GB]
gpM = [GM]
for i in range(num_levels):
GA = cv2.pyrDown(GA)
GB = cv2.pyrDown(GB)
GM = cv2.pyrDown(GM)
gpA.append(np.float32(GA))
gpB.append(np.float32(GB))
gpM.append(np.float32(GM))
lpA = [gpA[num_levels-1]]
lpB = [gpB[num_levels-1]]
gpMr = [gpM[num_levels-1]]
for i in range(num_levels-1,0,-1):
LA = np.subtract(gpA[i-1], cv2.pyrUp(gpA[i]))
LB = np.subtract(gpB[i-1], cv2.pyrUp(gpB[i]))
lpA.append(LA)
lpB.append(LB)
gpMr.append(gpM[i-1])
LS = []
for la,lb,gm in zip(lpA,lpB,gpMr):
ls = la * gm + lb * (1.0 - gm)
LS.append(ls)
ls_ = LS[0]
for i in range(1,num_levels):
ls_ = cv2.pyrUp(ls_)
ls_ = cv2.add(ls_, LS[i])
ls_ = ls_[:height, :width, :]
#ls_ = (ls_ - np.min(ls_)) * (255.0 / (np.max(ls_) - np.min(ls_)))
return ls_.clip(0, 255)
def mask_crop(mask, crop):
top, bottom, left, right = crop
shape = mask.shape
top = int(top)
bottom = int(bottom)
if top + bottom < shape[1]:
if top > 0: mask[:top, :] = 0
if bottom > 0: mask[-bottom:, :] = 0
left = int(left)
right = int(right)
if left + right < shape[0]:
if left > 0: mask[:, :left] = 0
if right > 0: mask[:, -right:] = 0
return mask
def create_image_grid(images, size=128):
num_images = len(images)
num_cols = int(np.ceil(np.sqrt(num_images)))
num_rows = int(np.ceil(num_images / num_cols))
grid = np.zeros((num_rows * size, num_cols * size, 3), dtype=np.uint8)
for i, image in enumerate(images):
row_idx = (i // num_cols) * size
col_idx = (i % num_cols) * size
image = cv2.resize(image.copy(), (size,size))
if image.dtype != np.uint8:
image = (image.astype('float32') * 255).astype('uint8')
if image.ndim == 2:
image = cv2.cvtColor(image, cv2.COLOR_GRAY2BGR)
grid[row_idx:row_idx + size, col_idx:col_idx + size] = image
return grid
|