File size: 5,543 Bytes
71c9afb
 
 
 
 
 
 
db275a2
71c9afb
 
226cc7a
db275a2
 
 
71c9afb
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
226cc7a
71c9afb
db275a2
 
226cc7a
71c9afb
 
226cc7a
 
 
 
 
 
db275a2
 
71c9afb
 
db275a2
226cc7a
db275a2
226cc7a
db275a2
226cc7a
 
 
 
 
db275a2
226cc7a
db275a2
226cc7a
 
 
 
 
db275a2
71c9afb
 
 
 
 
db275a2
71c9afb
 
 
 
 
 
 
db275a2
71c9afb
db275a2
71c9afb
226cc7a
db275a2
 
 
 
 
226cc7a
db275a2
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
226cc7a
db275a2
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
import time
import torch
import onnx
import cv2
import onnxruntime
import numpy as np
from tqdm import tqdm
import torch.nn as nn
from onnx import numpy_helper
from skimage import transform as trans
import torchvision.transforms.functional as F
import torch.nn.functional as F
from utils import mask_crop, laplacian_blending


arcface_dst = np.array(
    [[38.2946, 51.6963], [73.5318, 51.5014], [56.0252, 71.7366],
     [41.5493, 92.3655], [70.7299, 92.2041]],
    dtype=np.float32)

def estimate_norm(lmk, image_size=112, mode='arcface'):
    assert lmk.shape == (5, 2)
    assert image_size % 112 == 0 or image_size % 128 == 0
    if image_size % 112 == 0:
        ratio = float(image_size) / 112.0
        diff_x = 0
    else:
        ratio = float(image_size) / 128.0
        diff_x = 8.0 * ratio
    dst = arcface_dst * ratio
    dst[:, 0] += diff_x
    tform = trans.SimilarityTransform()
    tform.estimate(lmk, dst)
    M = tform.params[0:2, :]
    return M


def norm_crop2(img, landmark, image_size=112, mode='arcface'):
    M = estimate_norm(landmark, image_size, mode)
    warped = cv2.warpAffine(img, M, (image_size, image_size), borderValue=0.0)
    return warped, M


class Inswapper():
    def __init__(self, model_file=None, batch_size=32, providers=['CPUExecutionProvider']):
        self.model_file = model_file
        self.batch_size = batch_size

        model = onnx.load(self.model_file)
        graph = model.graph
        self.emap = numpy_helper.to_array(graph.initializer[-1])

        self.session_options = onnxruntime.SessionOptions()
        self.session = onnxruntime.InferenceSession(self.model_file, sess_options=self.session_options, providers=providers)

    def forward(self, imgs, latents):
        preds = []
        for img, latent in zip(imgs, latents):
            img = img / 255
            pred = self.session.run(['output'], {'target': img, 'source': latent})[0]
            preds.append(pred)

    def get(self, imgs, target_faces, source_faces):
        imgs = list(imgs)

        preds = [None] * len(imgs)
        matrs = [None] * len(imgs)

        for idx, (img, target_face, source_face) in enumerate(zip(imgs, target_faces, source_faces)):
            matrix, blob, latent = self.prepare_data(img, target_face, source_face)
            pred = self.session.run(['output'], {'target': blob, 'source': latent})[0]
            pred = pred.transpose((0, 2, 3, 1))[0]
            pred = np.clip(255 * pred, 0, 255).astype(np.uint8)[:, :, ::-1]

            preds[idx] = pred
            matrs[idx] = matrix

        return (preds, matrs)

    def prepare_data(self, img, target_face, source_face):
        if isinstance(img, str):
            img = cv2.imread(img)

        aligned_img, matrix = norm_crop2(img, target_face.kps, 128)

        blob = cv2.dnn.blobFromImage(aligned_img, 1.0 / 255, (128, 128), (0., 0., 0.), swapRB=True)

        latent = source_face.normed_embedding.reshape((1, -1))
        latent = np.dot(latent, self.emap)
        latent /= np.linalg.norm(latent)

        return (matrix, blob, latent)

    def batch_forward(self, img_list, target_f_list, source_f_list):
        num_samples = len(img_list)
        num_batches = (num_samples + self.batch_size - 1) // self.batch_size

        for i in tqdm(range(num_batches), desc="Generating face"):
            start_idx = i * self.batch_size
            end_idx = min((i + 1) * self.batch_size, num_samples)

            batch_img = img_list[start_idx:end_idx]
            batch_target_f = target_f_list[start_idx:end_idx]
            batch_source_f = source_f_list[start_idx:end_idx]

            batch_pred, batch_matr = self.get(batch_img, batch_target_f, batch_source_f)

            yield batch_pred, batch_matr


def paste_to_whole(foreground, background, matrix, mask=None, crop_mask=(0,0,0,0), blur_amount=0.1, erode_amount = 0.15, blend_method='linear'):
    inv_matrix = cv2.invertAffineTransform(matrix)
    fg_shape = foreground.shape[:2]
    bg_shape = (background.shape[1], background.shape[0])
    foreground = cv2.warpAffine(foreground, inv_matrix, bg_shape, borderValue=0.0)

    if mask is None:
        mask = np.full(fg_shape, 1., dtype=np.float32)
        mask = mask_crop(mask, crop_mask)
        mask = cv2.warpAffine(mask, inv_matrix, bg_shape, borderValue=0.0)
    else:
        assert fg_shape == mask.shape[:2], "foreground & mask shape mismatch!"
        mask = mask_crop(mask, crop_mask).astype('float32')
        mask = cv2.warpAffine(mask, inv_matrix, (background.shape[1], background.shape[0]), borderValue=0.0)

    _mask = mask.copy()
    _mask[_mask > 0.05] = 1.
    non_zero_points = cv2.findNonZero(_mask)
    _, _, w, h = cv2.boundingRect(non_zero_points)
    mask_size = int(np.sqrt(w * h))

    if erode_amount > 0:
        kernel_size = max(int(mask_size * erode_amount), 1)
        structuring_element = cv2.getStructuringElement(cv2.MORPH_RECT, (kernel_size, kernel_size))
        mask = cv2.erode(mask, structuring_element)

    if blur_amount > 0:
        kernel_size = max(int(mask_size * blur_amount), 3)
        if kernel_size % 2 == 0:
            kernel_size += 1
        mask = cv2.GaussianBlur(mask, (kernel_size, kernel_size), 0)

    mask = np.tile(np.expand_dims(mask, axis=-1), (1, 1, 3))

    if blend_method == 'laplacian':
        composite_image = laplacian_blending(foreground, background, mask.clip(0,1), num_levels=4)
    else:
        composite_image = mask * foreground + (1 - mask) * background

    return composite_image.astype("uint8").clip(0, 255)