File size: 4,895 Bytes
cc5b602
6f619d7
93fdc72
6386510
3eed0af
51a7d9e
3eed0af
6386510
3eed0af
51a7d9e
e6367a7
3eed0af
51a7d9e
6386510
bd34f0b
22d8950
bd34f0b
 
51a7d9e
3eed0af
 
 
 
 
 
 
 
 
 
 
 
 
 
93fdc72
4ed884e
 
 
 
 
 
 
3eed0af
010165e
4ed884e
 
 
e59867b
 
 
 
 
 
 
3eed0af
 
 
 
 
 
 
 
 
 
 
 
 
c6b6986
 
3eed0af
e59867b
3eed0af
7c59d2e
3eed0af
4ed884e
c4592e6
 
 
3eed0af
285cc01
27dc368
3eed0af
b64165b
3eed0af
 
 
d6a2aad
c46b9e7
3eed0af
 
 
 
51a7d9e
6386510
51a7d9e
17198d2
51a7d9e
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
4ed884e
51a7d9e
 
b64165b
51a7d9e
 
bd34f0b
 
 
 
4ed884e
bd34f0b
 
 
 
 
 
 
 
 
 
 
 
 
 
 
4ed884e
bd34f0b
 
 
3eed0af
 
010165e
3eed0af
 
 
51a7d9e
 
 
 
 
 
 
3fb77c6
51a7d9e
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
import os
import time
#import spaces
import torch
from transformers import AutoModelForCausalLM, AutoTokenizer, TextIteratorStreamer
import gradio as gr
from threading import Thread

MODEL_LIST = ["HuggingFaceTB/SmolLM-1.7B-Instruct", "HuggingFaceTB/SmolLM-135M-Instruct", "HuggingFaceTB/SmolLM-360M-Instruct"]
HF_TOKEN = os.environ.get("HF_TOKEN", None)

TITLE = "<h1><center>SmolLM-Instruct</center></h1>"

PLACEHOLDER = """
<center>
<p>SmolLM is a series of state-of-the-art small language models available in three sizes: 135M, 360M, and 1.7B parameters.</p>
</center>
"""

# pip install transformers
from transformers import AutoModelForCausalLM, AutoTokenizer

device = "cpu" # for GPU usage or "cpu" for CPU usage

tokenizer0 = AutoTokenizer.from_pretrained(MODEL_LIST[0])
model0 = AutoModelForCausalLM.from_pretrained(MODEL_LIST[0]).to(device)

tokenizer1 = AutoTokenizer.from_pretrained(MODEL_LIST[1])
model1 = AutoModelForCausalLM.from_pretrained(MODEL_LIST[1]).to(device)

tokenizer2 = AutoTokenizer.from_pretrained(MODEL_LIST[2])
model2 = AutoModelForCausalLM.from_pretrained(MODEL_LIST[2]).to(device)

#@spaces.GPU()
def stream_chat(
    message: str, 
    history: list, 
    temperature: float = 0.8, 
    max_new_tokens: int = 1024, 
    top_p: float = 1.0, 
    top_k: int = 20, 
    penalty: float = 1.2,
    choice: str = "135M"
):
    print(f'message: {message}')
    print(f'history: {history}')

    conversation = []
    for prompt, answer in history:
        conversation.extend([
            {"role": "user", "content": prompt}, 
            {"role": "assistant", "content": answer},
        ])

    conversation.append({"role": "user", "content": message})

    if choice == "1.7B":
        tokenizer = tokenizer0
        model = model0
    elif choice == "135M":
        model = model1
        tokenizer = tokenizer1
    else:
        model = model2
        tokenizer = tokenizer2

    input_text=tokenizer.apply_chat_template(conversation,  add_generation_prompt=True, tokenize=False)
    inputs = tokenizer.encode(input_text, return_tensors="pt").to(device)
    streamer = TextIteratorStreamer(tokenizer, timeout=60.0, skip_prompt=True, skip_special_tokens=True)
    
    generate_kwargs = dict(
        input_ids=inputs, 
        max_new_tokens = max_new_tokens,
        do_sample = False if temperature == 0 else True,
        top_p = top_p,
        top_k = top_k,
        temperature = temperature,
        streamer=streamer,
    )

    with torch.no_grad():
        thread = Thread(target=model.generate, kwargs=generate_kwargs)
        thread.start()
        
    buffer = ""
    for new_text in streamer:
        buffer += new_text
        yield buffer

            
    #print(tokenizer.decode(outputs[0]))

chatbot = gr.Chatbot(height=600, placeholder=PLACEHOLDER)

with gr.Blocks(theme="Nymbo/Nymbo_Theme") as demo:
    gr.HTML(TITLE)
    gr.ChatInterface(
        fn=stream_chat,
        chatbot=chatbot,
        fill_height=True,
        additional_inputs_accordion=gr.Accordion(label="⚙️ Parameters", open=False, render=False),
        additional_inputs=[
            gr.Slider(
                minimum=0,
                maximum=1,
                step=0.1,
                value=0.8,
                label="Temperature",
                render=False,
            ),
            gr.Slider(
                minimum=128,
                maximum=8192,
                step=1,
                value=1024,
                label="Max new tokens",
                render=False,
            ),
            gr.Slider(
                minimum=0.0,
                maximum=1.0,
                step=0.1,
                value=1.0,
                label="top_p",
                render=False,
            ),
            gr.Slider(
                minimum=1,
                maximum=20,
                step=1,
                value=20,
                label="top_k",
                render=False,
            ),
            gr.Slider(
                minimum=0.0,
                maximum=2.0,
                step=0.1,
                value=1.2,
                label="Repetition penalty",
                render=False,
            ),
            gr.Radio(
                ["135M", "360M", "1.7B"],
                value="135M",
                label="Load Model",
                render=False,
            ),
        ],
        examples=[
            ["Help me study vocabulary: write a sentence for me to fill in the blank, and I'll try to pick the correct option."],
            ["What are 5 creative things I could do with my kids' art? I don't want to throw them away, but it's also so much clutter."],
            ["Tell me a random fun fact about the Roman Empire."],
            ["Show me a code snippet of a website's sticky header in CSS and JavaScript."],
        ],
        cache_examples=False,
    )


if __name__ == "__main__":
    demo.launch()