File size: 13,085 Bytes
e1f356a
86332dd
835026c
 
 
e1f356a
 
 
 
 
 
e06a544
 
e1f356a
86332dd
 
29d9b22
e1f356a
 
 
 
 
 
 
242e308
e1f356a
7e4fb7d
 
 
 
 
 
 
 
 
 
 
0001c43
 
 
 
7e4fb7d
0001c43
7e4fb7d
0001c43
 
 
aedba51
7e4fb7d
 
 
 
 
 
 
 
 
 
 
d87354d
 
 
 
 
 
 
 
 
46cc42f
9df3294
46cc42f
 
173ab3f
9df3294
 
46cc42f
 
 
6d933ce
e06a544
 
1be80ae
e06a544
c18f316
b16e1f9
e1d439c
a8373d8
e1d439c
 
 
c18f316
a8373d8
 
 
 
c18f316
a8373d8
c18f316
232ddba
a8373d8
 
 
 
e1d439c
 
6d933ce
e1d439c
 
 
 
 
 
 
 
e06a544
e1f356a
 
d943c60
e1f356a
 
 
 
 
 
 
 
 
b5b79c5
 
 
 
 
 
 
 
d9cf5d2
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
b5b79c5
d9cf5d2
 
 
 
 
b5b79c5
d9cf5d2
 
 
 
 
 
e1f356a
 
 
 
 
 
 
 
9d003fe
 
e1f356a
 
 
 
 
 
 
 
 
 
 
15d9ca5
e1f356a
c5bd46f
 
e1f356a
 
 
 
 
 
 
 
 
 
 
 
 
 
 
431c1da
3e1467e
e1f356a
 
431c1da
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
b17ed6b
431c1da
e92cabb
431c1da
e92cabb
431c1da
 
 
 
 
 
 
 
e1f356a
 
 
 
 
 
 
 
 
 
 
 
 
 
 
37e985c
e1f356a
 
 
 
 
 
13f042b
e1f356a
d943c60
e1f356a
15d9ca5
e1f356a
 
c5bd46f
431c1da
e1f356a
 
 
 
 
13f042b
e1f356a
 
 
c3d04a2
e1f356a
15d9ca5
e1f356a
 
13f042b
e1f356a
3e1467e
 
e1f356a
29d9b22
 
03ca010
b5b79c5
03ca010
d9cf5d2
03ca010
 
 
 
f444781
03ca010
d9cf5d2
03ca010
29d9b22
 
ac1285e
0147802
33fa1b3
 
b002a87
 
ac1285e
826286f
 
 
 
 
 
 
062a4a7
 
826286f
0935784
826286f
 
 
062a4a7
 
 
 
826286f
 
e06a544
1be80ae
d271513
e06a544
d271513
7e4fb7d
 
 
4cde5ef
7e4fb7d
8fac38f
e37b210
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1be80ae
33fa1b3
 
 
 
dbc3d8f
33fa1b3
 
 
 
d87354d
0bb0248
1090ea0
0bb0248
4d4650b
4098470
4d4650b
0bb0248
1090ea0
 
 
0bb0248
 
431c1da
c392ffa
 
 
 
 
 
 
 
 
 
 
29d9b22
c5bd46f
87125cc
1b2210b
33fa1b3
1be80ae
33fa1b3
 
 
 
 
 
4098470
33fa1b3
e1f356a
7f6ba54
2f373b5
fa221ab
e1f356a
917f3b4
05ea95f
e1f356a
05d25f5
7f6ba54
05d25f5
c392ffa
29d9b22
05d25f5
 
 
e1f356a
 
05d25f5
da0e32f
3e662a4
 
 
05ea95f
826286f
3e662a4
e06a544
826286f
 
cac16a8
6d933ce
29d9b22
05d25f5
 
7f6ba54
29d9b22
e1f356a
03ca010
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
import gradio as gr
#import urllib.request
import requests
import bs4
import lxml
import os
#import subprocess
from huggingface_hub import InferenceClient,HfApi
import random
import json
import datetime
from pypdf import PdfReader
import uuid
#from query import tasks
from agent import (
    PREFIX,
    GET_CHART,
    COMPRESS_DATA_PROMPT,
    COMPRESS_DATA_PROMPT_SMALL,
    LOG_PROMPT,
    LOG_RESPONSE,
)
api=HfApi()

client = InferenceClient("mistralai/Mixtral-8x7B-Instruct-v0.1")

def find_all(url):
    return_list=[]
    print (url)
    #if action_input in query.tasks:
    print (f"trying URL:: {url}")        
    try:
        if url != "" and url != None:    
            out = []
            source = requests.get(url)
            #source = urllib.request.urlopen(url).read()
            soup = bs4.BeautifulSoup(source.content,'lxml')

            rawp=(f'RAW TEXT RETURNED: {soup.text}')
            cnt=0
            cnt+=len(rawp)
            out.append(rawp)
            out.append("HTML fragments: ")
            q=("a","p","span","content","article")
            for p in soup.find_all("a"):
                out.append([{"LINK TITLE":p.get('title'),"URL":p.get('href'),"STRING":p.string}])
  
            print(rawp)
            return True, rawp
        else: 
            return False, "Enter Valid URL"
    except Exception as e:
        print (e)
        return False, f'Error: {e}'

        #else:
    #    history = "observation: The search query I used did not return a valid response"
        
    return "MAIN", None, history, task

def read_txt(txt_path):
    text=""
    with open(txt_path,"r") as f:
        text = f.read()
    f.close()
    print (text)
    return text

def read_pdf(pdf_path):
    text=""
    reader = PdfReader(f'{pdf_path}')
    number_of_pages = len(reader.pages)
    for i in range(number_of_pages):
        page = reader.pages[i]
        text = f'{text}\n{page.extract_text()}'
    print (text)
    return text

error_box=[]
def read_pdf_online(url):
    uid=uuid.uuid4()
    print(f"reading {url}")
    response = requests.get(url, stream=True)
    print(response.status_code)
    text=""
#################
    
#####################
    try:
        if response.status_code == 200:
            with open("test.pdf", "wb") as f:
                f.write(response.content)
            #f.close()
            #out = Path("./data.pdf")
            #print (out)
            reader = PdfReader("test.pdf")
            number_of_pages = len(reader.pages)
            print(number_of_pages)
            for i in range(number_of_pages):
                page = reader.pages[i]
                text = f'{text}\n{page.extract_text()}'
                print(f"PDF_TEXT:: {text}")
            return text
        else:
            text = response.status_code
            error_box.append(url)
            print(text)
            return text


    except Exception as e:
        print (e)
        return e


VERBOSE = True
MAX_HISTORY = 100
MAX_DATA = 20000

def format_prompt(message, history):
  prompt = "<s>"
  for user_prompt, bot_response in history:
    prompt += f"[INST] {user_prompt} [/INST]"
    prompt += f" {bot_response}</s> "
  prompt += f"[INST] {message} [/INST]"
  return prompt

def run_gpt_no_prefix(
    prompt_template,
    stop_tokens,
    max_tokens,
    seed,
    **prompt_kwargs,
):
    print(seed)
    try:
        generate_kwargs = dict(
            temperature=0.9,
            max_new_tokens=max_tokens,
            top_p=0.95,
            repetition_penalty=1.0,
            do_sample=True,
            seed=seed,
        )
        
        content = prompt_template.format(**prompt_kwargs)
        #if VERBOSE:
        print(LOG_PROMPT.format(content))
        
        
        #formatted_prompt = format_prompt(f"{system_prompt}, {prompt}", history)
        #formatted_prompt = format_prompt(f'{content}', history)
    
        stream = client.text_generation(content, **generate_kwargs, stream=True, details=True, return_full_text=False)
        resp = ""
        for response in stream:
            resp += response.token.text
            #yield resp
    
        #if VERBOSE:
        print(LOG_RESPONSE.format(resp))
        return resp
    except Exception as e:
        print(f'no_prefix_error:: {e}')
        return "Error"
def run_gpt(
    prompt_template,
    stop_tokens,
    max_tokens,
    seed,
    **prompt_kwargs,
):
    print(seed)
    timestamp=datetime.datetime.now()
    
    generate_kwargs = dict(
        temperature=0.9,
        max_new_tokens=max_tokens,
        top_p=0.95,
        repetition_penalty=1.0,
        do_sample=True,
        seed=seed,
    )
    
    content = PREFIX.format(
        timestamp=timestamp,
        purpose="Compile the provided data and complete the users task"
    ) + prompt_template.format(**prompt_kwargs)
    #if VERBOSE:
    print(LOG_PROMPT.format(content))
    
    
    #formatted_prompt = format_prompt(f"{system_prompt}, {prompt}", history)
    #formatted_prompt = format_prompt(f'{content}', history)

    stream = client.text_generation(content, **generate_kwargs, stream=True, details=True, return_full_text=False)
    resp = ""
    for response in stream:
        resp += response.token.text
        #yield resp

    if VERBOSE:
        print(LOG_RESPONSE.format(resp))
    return resp

    
def compress_data(c, instruct, history):
    seed=random.randint(1,1000000000)
    
    print (c)
    #tot=len(purpose)
    #print(tot)
    divr=int(c)/MAX_DATA
    divi=int(divr)+1 if divr != int(divr) else int(divr)
    chunk = int(int(c)/divr)
    print(f'chunk:: {chunk}')
    print(f'divr:: {divr}')
    print (f'divi:: {divi}')
    out = []
    #out=""
    s=0
    e=chunk
    print(f'e:: {e}')
    new_history=""
    #task = f'Compile this data to fulfill the task: {task}, and complete the purpose: {purpose}\n'
    for z in range(divi):
        print(f's:e :: {s}:{e}')
        
        hist = history[s:e]
        
        resp = run_gpt(
            COMPRESS_DATA_PROMPT_SMALL,
            stop_tokens=["observation:", "task:", "action:", "thought:"],
            max_tokens=8192,
            seed=seed,
            direction=instruct,
            knowledge="",
            history=hist,
        ).strip("\n")
        out.append(resp)
        #new_history = resp
        print (resp)
        #out+=resp
        e=e+chunk
        s=s+chunk
    return out

    
def compress_data_og(c, instruct, history):
    seed=random.randint(1,1000000000)
    
    print (c)
    #tot=len(purpose)
    #print(tot)
    divr=int(c)/MAX_DATA
    divi=int(divr)+1 if divr != int(divr) else int(divr)
    chunk = int(int(c)/divr)
    print(f'chunk:: {chunk}')
    print(f'divr:: {divr}')
    print (f'divi:: {divi}')
    out = []
    #out=""
    s=0
    e=chunk
    print(f'e:: {e}')
    new_history=""
    #task = f'Compile this data to fulfill the task: {task}, and complete the purpose: {purpose}\n'
    for z in range(divi):
        print(f's:e :: {s}:{e}')
        
        hist = history[s:e]
        
        resp = run_gpt(
            COMPRESS_DATA_PROMPT,
            stop_tokens=["observation:", "task:", "action:", "thought:"],
            max_tokens=8192,
            seed=seed,
            direction=instruct,
            knowledge=new_history,
            history=hist,
        ).strip("\n")
        
        new_history = resp
        print (resp)
        out+=resp
        e=e+chunk
        s=s+chunk
    '''
    resp = run_gpt(
        COMPRESS_DATA_PROMPT,
        stop_tokens=["observation:", "task:", "action:", "thought:"],
        max_tokens=8192,
        seed=seed,
        direction=instruct,
        knowledge=new_history,
        history="All data has been recieved.",
    )'''
    print ("final" + resp)
    #history = "observation: {}\n".format(resp)
    return resp

def get_chart(inp):
    seed=random.randint(1,1000000000)
    try:
        resp = run_gpt_no_prefix(
            GET_CHART,
            stop_tokens=[],
            max_tokens=8192,
            seed=seed,
            inp=inp,
        ).strip("\n")
        print(resp)
    except Exception as e:
        print(f'Error:: {e}')
        resp = e
    return resp
def summarize(inp,history,report_check,chart_check,data=None,files=None,url=None,pdf_url=None,pdf_batch=None):
    json_box=[]
    error_box=""
    if inp == "":
        inp = "Process this data"
    history.clear()
    history = [(inp,"Working on it...")] 
    yield "",history,error_box,json_box

    if pdf_batch.startswith("http"):
        c=0
        data=""
        for i in str(pdf_batch):
            if i==",":
                c+=1
        print (f'c:: {c}')

        try:
            for i in range(c+1):
                batch_url = pdf_batch.split(",",c)[i]
                bb = read_pdf_online(batch_url)
                data=f'{data}\nFile Name URL ({batch_url}):\n{bb}'
        except Exception as e:
            print(e)
            #data=f'{data}\nError reading URL ({batch_url})'
            

        
    if pdf_url.startswith("http"):
        print("PDF_URL")
        out = read_pdf_online(pdf_url)
        data=out
    if url.startswith("http"):
        val, out = find_all(url)
        if not val:
            data="Error"
            rawp = str(out)
        else:
            data=out
    if files:
        for i, file in enumerate(files):
            try: 
                print (file)
                if file.endswith(".pdf"):
                    zz=read_pdf(file)
                    print (zz)
                    data=f'{data}\nFile Name ({file}):\n{zz}'
                elif file.endswith(".txt"):
                    zz=read_txt(file)
                    print (zz)
                    data=f'{data}\nFile Name ({file}):\n{zz}'                
            except Exception as e:
                data=f'{data}\nError opening File Name ({file})'                
                print (e) 
    if data != "Error" and data != "":
        print(inp)
        out = str(data)
        rl = len(out)
        print(f'rl:: {rl}')
        c=1
        for i in str(out):
            if i == " " or i=="," or i=="\n":
                c +=1
        print (f'c:: {c}')
        
        json_out = compress_data(c,inp,out)  
        #json_box.append(json_out)

        #json_object = json.dumps(eval(json_out), indent=4)
        #json_box.append(json_out)
        print(f'JSON_BOX:: {json_out}')
        # Writing to sample.json
        #with open("tmp.json", "w") as outfile:
        #    outfile.write(json_object)
        #outfile.close()
        
        #json_box.append(json_out)
        out = str(json_out)
        if report_check:
            rl = len(out)
            print(f'rl:: {rl}')
            c=1
            for i in str(out):
                if i == " " or i=="," or i=="\n":
                    c +=1
            print (f'c2:: {c}')
            rawp = compress_data_og(c,inp,out)
        else:
            rawp = out
        if chart_check:
            print (f"making chart from ::: {rawp}")
            error_box = get_chart(str(rawp))
            print(error_box)
    else:
        rawp = "Provide a valid data source"
    #print (rawp)
    #print (f'out:: {out}')
    #history += "observation: the search results are:\n {}\n".format(out)
    #task = "complete?"
    history.clear()
    history.append((inp,rawp))
    yield "", history,error_box,json_out

#################################
def clear_fn():
    return "",[(None,None)]

with gr.Blocks() as app:
    gr.HTML("""<center><h1>Mixtral 8x7B TLDR Summarizer + Web</h1><h3>Summarize Data of unlimited length</h3>""")
    chatbot = gr.Chatbot(label="Mixtral 8x7B Chatbot",show_copy_button=True)
    with gr.Row():
        with gr.Column(scale=3):
            prompt=gr.Textbox(label = "Instructions (optional)")
        with gr.Column(scale=1):
            report_check=gr.Checkbox(label="Return Report", value=True)
            chart_check=gr.Checkbox(label="Return Chart", value=True)
            button=gr.Button()
        
        #models_dd=gr.Dropdown(choices=[m for m in return_list],interactive=True)
    with gr.Row():
        stop_button=gr.Button("Stop")
        clear_btn = gr.Button("Clear")
    with gr.Row():
        with gr.Tab("Text"):
            data=gr.Textbox(label="Input Data (paste text)", lines=6)
        with gr.Tab("File"):
            file=gr.Files(label="Input File(s) (.pdf .txt)")
        with gr.Tab("Raw HTML"):
            url = gr.Textbox(label="URL")
        with gr.Tab("PDF URL"):
            pdf_url = gr.Textbox(label="PDF URL")       
        with gr.Tab("PDF Batch"):
            pdf_batch = gr.Textbox(label="PDF URL Batch (comma separated)")
    e_box=gr.Textbox()
    json_out=gr.JSON()
    #text=gr.JSON()
    #inp_query.change(search_models,inp_query,models_dd)
    clear_btn.click(clear_fn,None,[prompt,chatbot])
    go=button.click(summarize,[prompt,chatbot,report_check,chart_check,data,file,url,pdf_url,pdf_batch],[prompt,chatbot,e_box,json_out])
    stop_button.click(None,None,None,cancels=[go])
app.queue(default_concurrency_limit=20).launch(show_api=False)