File size: 7,487 Bytes
db1e5fb
 
 
 
f4da866
 
db1e5fb
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
0e35688
 
db1e5fb
9d220f6
db1e5fb
 
 
 
 
 
9d220f6
 
 
 
 
 
db1e5fb
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
f4da866
 
 
 
db1e5fb
 
 
 
c750343
 
db1e5fb
 
96315e7
 
db1e5fb
 
 
 
926d3f3
 
21bd5b5
 
db1e5fb
 
 
8956d86
 
db1e5fb
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
926d3f3
db1e5fb
8956d86
db1e5fb
 
 
 
926d3f3
 
db1e5fb
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
#!/usr/bin/env python

from __future__ import annotations

import os

import gradio as gr

from constants import UploadTarget
from inference import InferencePipeline
from trainer import Trainer


def create_training_demo(trainer: Trainer,
                         pipe: InferencePipeline | None = None) -> gr.Blocks:
    with gr.Blocks() as demo:
        with gr.Row():
            with gr.Column():
                with gr.Box():
                    gr.Markdown('Training Data')
                    instance_images = gr.Files(label='Instance images')
                    instance_prompt = gr.Textbox(label='Instance prompt',
                                                 max_lines=1)
                    gr.Markdown('''
                        - Upload images of the style you are planning on training on.
                        - For an instance prompt, use a unique, made up word to avoid collisions.
                        ''')
                with gr.Box():
                    gr.Markdown('Output Model')
                    output_model_name = gr.Text(label='Name of your model',
                                                max_lines=1)
                    delete_existing_model = gr.Checkbox(
                        label='Delete existing model of the same name',
                        value=False)
                    validation_prompt = gr.Text(label='Validation Prompt')
                with gr.Box():
                    gr.Markdown('Upload Settings')
                    with gr.Row():
                        upload_to_hub = gr.Checkbox(
                            label='Upload model to Hub',
                            value=bool(os.getenv('SPACE_ID')))
                        use_private_repo = gr.Checkbox(label='Private',
                                                       value=True)
                        delete_existing_repo = gr.Checkbox(
                            label='Delete existing repo of the same name',
                            value=False)
                    upload_to = gr.Radio(
                        label='Upload to',
                        choices=[_.value for _ in UploadTarget],
                        value=UploadTarget.LORA_LIBRARY.value)
                    gr.Markdown('''
                    - By default, trained models will be uploaded to [LoRA Library](https://huggingface.co/lora-library) (See [this example model](https://huggingface.co/lora-library/lora-dreambooth-sample-dog)).
                      Note that it will fail if you are not a member of the organization. So please join the org first. In the case uploading failed, you can use the "Upload" tab to upload your model later.
                    - You can also choose "Personal Profile", in which case, the model will be uploaded to https://huggingface.co/{your_username}/{model_name}.
                    ''')

            with gr.Box():
                gr.Markdown('Training Parameters')
                with gr.Row():
                    base_model = gr.Text(
                        label='Base Model',
                        value='stabilityai/stable-diffusion-2-1-base',
                        max_lines=1)
                    resolution = gr.Dropdown(choices=['512', '768'],
                                             value='512',
                                             label='Resolution')
                num_training_steps = gr.Number(
                    label='Number of Training Steps', value=1000, precision=0)
                learning_rate = gr.Number(label='Learning Rate', value=0.0001)
                gradient_accumulation = gr.Number(
                    label='Number of Gradient Accumulation',
                    value=1,
                    precision=0)
                seed = gr.Slider(label='Seed',
                                 minimum=0,
                                 maximum=100000,
                                 step=1,
                                 value=0)
                fp16 = gr.Checkbox(label='FP16', value=True)
                use_8bit_adam = gr.Checkbox(label='Use 8bit Adam', value=True)
                checkpointing_steps = gr.Number(label='Checkpointing Steps',
                                                value=100,
                                                precision=0)
                use_wandb = gr.Checkbox(label='Use W&B',
                                        value=False,
                                        interactive=bool(
                                            os.getenv('WANDB_API_KEY')))
                validation_epochs = gr.Number(label='Validation Epochs',
                                              value=100,
                                              precision=0)
                gr.Markdown('''
                    - The base model must be a model that is compatible with [diffusers](https://github.com/huggingface/diffusers) library.
                    - It takes a few minutes to download the base model first.
                    - It will take about 8 minutes to train for 1000 steps with a T4 GPU.
                    - You may want to try a small number of steps first, like 1, to see if everything works fine in your environment.
                    - You can check the training status by pressing the "Open logs" button if you are running this on your Space.
                    - You need to set the environment variable `WANDB_API_KEY` if you'd like to use [W&B](https://wandb.ai/site). See [W&B documentation](https://docs.wandb.ai/guides/track/advanced/environment-variables).
                    - **Note:** Due to [this issue](https://github.com/huggingface/accelerate/issues/944), currently, training will not terminate properly if you use W&B.
                    ''')

        remove_gpu_after_training = gr.Checkbox(
            label='Remove GPU after training',
            value=False,
            interactive=bool(os.getenv('SPACE_ID')),
            visible=False)
        run_button = gr.Button('Start Training')

        with gr.Box():
            gr.Markdown('Output message')
            output_message = gr.Markdown()

        if pipe is not None:
            run_button.click(fn=pipe.clear)
        run_button.click(fn=trainer.run,
                         inputs=[
                             instance_images,
                             instance_prompt,
                             output_model_name,
                             delete_existing_model,
                             validation_prompt,
                             base_model,
                             resolution,
                             num_training_steps,
                             learning_rate,
                             gradient_accumulation,
                             seed,
                             fp16,
                             use_8bit_adam,
                             checkpointing_steps,
                             use_wandb,
                             validation_epochs,
                             upload_to_hub,
                             use_private_repo,
                             delete_existing_repo,
                             upload_to,
                             remove_gpu_after_training,
                         ],
                         outputs=output_message)
    return demo


if __name__ == '__main__':
    hf_token = os.getenv('HF_TOKEN')
    trainer = Trainer(hf_token)
    demo = create_training_demo(trainer)
    demo.queue(max_size=1).launch(share=False)