Spaces:
Sleeping
Sleeping
File size: 12,006 Bytes
267e47b |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 |
import gradio as gr
import base64
import os
from openai import OpenAI
import json
from doc2json import process_docx
dump_controls = False
log_to_console = False
# constants
image_embed_prefix = "🖼️🆙 "
def encode_image(image_data):
"""Generates a prefix for image base64 data in the required format for the
four known image formats: png, jpeg, gif, and webp.
Args:
image_data: The image data, encoded in base64.
Returns:
A string containing the prefix.
"""
# Get the first few bytes of the image data.
magic_number = image_data[:4]
# Check the magic number to determine the image type.
if magic_number.startswith(b'\x89PNG'):
image_type = 'png'
elif magic_number.startswith(b'\xFF\xD8'):
image_type = 'jpeg'
elif magic_number.startswith(b'GIF89a'):
image_type = 'gif'
elif magic_number.startswith(b'RIFF'):
if image_data[8:12] == b'WEBP':
image_type = 'webp'
else:
# Unknown image type.
raise Exception("Unknown image type")
else:
# Unknown image type.
raise Exception("Unknown image type")
return f"data:image/{image_type};base64,{base64.b64encode(image_data).decode('utf-8')}"
def add_text(history, text):
history = history + [(text, None)]
return history, gr.Textbox(value="", interactive=False)
def add_file(history, files):
for file in files:
if file.name.endswith(".docx"):
content = process_docx(file.name)
else:
with open(file.name, mode="rb") as f:
content = f.read()
if isinstance(content, bytes):
content = content.decode('utf-8', 'replace')
else:
content = str(content)
fn = os.path.basename(file.name)
history = history + [(f'```{fn}\n{content}\n```', None)]
gr.Info(f"File added as {fn}")
return history
def add_img(history, files):
for file in files:
if log_to_console:
print(f"add_img {file.name}")
history = history + [(image_embed_prefix + file.name, None)]
gr.Info(f"Image added as {file.name}")
return history
def submit_text(txt_value):
return add_text([chatbot, txt_value], [chatbot, txt_value])
def undo(history):
history.pop()
return history
def dump(history):
return str(history)
def load_settings():
# Dummy Python function, actual loading is done in JS
pass
def save_settings(acc, sec, prompt, temp, tokens, model):
# Dummy Python function, actual saving is done in JS
pass
def process_values_js():
return """
() => {
return ["oai_key", "system_prompt", "seed"];
}
"""
def bot(message, history, oai_key, system_prompt, seed, temperature, max_tokens, model):
try:
client = OpenAI(
api_key=oai_key
)
seed_i = None
if seed:
seed_i = int(seed)
if log_to_console:
print(f"bot history: {str(history)}")
history_openai_format = []
user_msg_parts = []
if system_prompt:
history_openai_format.append({"role": "system", "content": system_prompt})
for human, assi in history:
if human is not None:
if human.startswith(image_embed_prefix):
with open(human.lstrip(image_embed_prefix), mode="rb") as f:
content = f.read()
user_msg_parts.append({"type": "image_url",
"image_url":{"url": encode_image(content)}})
else:
user_msg_parts.append({"type": "text", "text": human})
if assi is not None:
if user_msg_parts:
history_openai_format.append({"role": "user", "content": user_msg_parts})
user_msg_parts = []
history_openai_format.append({"role": "assistant", "content": assi})
if message:
user_msg_parts.append({"type": "text", "text": human})
if user_msg_parts:
history_openai_format.append({"role": "user", "content": user_msg_parts})
if log_to_console:
print(f"br_prompt: {str(history_openai_format)}")
response = client.chat.completions.create(
model=model,
messages= history_openai_format,
temperature=temperature,
seed=seed_i,
max_tokens=max_tokens
)
if log_to_console:
print(f"br_response: {str(response)}")
history[-1][1] = response.choices[0].message.content
if log_to_console:
print(f"br_result: {str(history)}")
except Exception as e:
raise gr.Error(f"Error: {str(e)}")
return "", history
def import_history(history, file):
with open(file.name, mode="rb") as f:
content = f.read()
if isinstance(content, bytes):
content = content.decode('utf-8', 'replace')
else:
content = str(content)
# Deserialize the JSON content to history
history = json.loads(content)
# The history is returned and will be set to the chatbot component
return history
with gr.Blocks() as demo:
gr.Markdown("# OAI Chat (Nils' Version™️)")
with gr.Accordion("Settings"):
oai_key = gr.Textbox(label="OpenAI API Key", elem_id="oai_key")
model = gr.Dropdown(label="Model", value="gpt-4-turbo-preview", allow_custom_value=True, elem_id="model",
choices=["gpt-4-turbo-preview", "gpt-4-1106-preview", "gpt-4", "gpt-4-vision-preview", "gpt-3.5-turbo", "gpt-3.5-turbo-16k", "gpt-3.5-turbo-1106"])
system_prompt = gr.TextArea("You are a helpful AI.", label="System Prompt", lines=3, max_lines=250, elem_id="system_prompt")
seed = gr.Textbox(label="Seed", elem_id="seed")
temp = gr.Slider(0, 1, label="Temperature", elem_id="temp", value=1)
max_tokens = gr.Slider(1, 4000, label="Max. Tokens", elem_id="max_tokens", value=800)
save_button = gr.Button("Save Settings")
load_button = gr.Button("Load Settings")
load_button.click(load_settings, js="""
() => {
let elems = ['#oai_key textarea', '#system_prompt textarea', '#seed textarea', '#temp input', '#max_tokens input', '#model'];
elems.forEach(elem => {
let item = document.querySelector(elem);
let event = new InputEvent('input', { bubbles: true });
item.value = localStorage.getItem(elem.split(" ")[0].slice(1)) || '';
item.dispatchEvent(event);
});
}
""")
save_button.click(save_settings, [oai_key, system_prompt, seed, temp, max_tokens, model], js="""
(oai, sys, seed, temp, ntok, model) => {
localStorage.setItem('oai_key', oai);
localStorage.setItem('system_prompt', sys);
localStorage.setItem('seed', seed);
localStorage.setItem('temp', document.querySelector('#temp input').value);
localStorage.setItem('max_tokens', document.querySelector('#max_tokens input').value);
localStorage.setItem('model', model);
}
""")
chatbot = gr.Chatbot(
[],
elem_id="chatbot",
show_copy_button=True,
height=350
)
with gr.Row():
btn = gr.UploadButton("📁 Upload", size="sm", file_count="multiple")
img_btn = gr.UploadButton("🖼️ Upload", size="sm", file_count="multiple", file_types=["image"])
undo_btn = gr.Button("↩️ Undo")
undo_btn.click(undo, inputs=[chatbot], outputs=[chatbot])
clear = gr.ClearButton(chatbot, value="🗑️ Clear")
with gr.Row():
txt = gr.TextArea(
scale=4,
show_label=False,
placeholder="Enter text and press enter, or upload a file",
container=False,
lines=3,
)
submit_btn = gr.Button("🚀 Send", scale=0)
submit_click = submit_btn.click(add_text, [chatbot, txt], [chatbot, txt], queue=False).then(
bot, [txt, chatbot, oai_key, system_prompt, seed, temp, max_tokens, model], [txt, chatbot],
)
submit_click.then(lambda: gr.Textbox(interactive=True), None, [txt], queue=False)
if dump_controls:
with gr.Row():
dmp_btn = gr.Button("Dump")
txt_dmp = gr.Textbox("Dump")
dmp_btn.click(dump, inputs=[chatbot], outputs=[txt_dmp])
txt_msg = txt.submit(add_text, [chatbot, txt], [chatbot, txt], queue=False).then(
bot, [txt, chatbot, oai_key, system_prompt, seed, temp, max_tokens, model], [txt, chatbot],
)
txt_msg.then(lambda: gr.Textbox(interactive=True), None, [txt], queue=False)
file_msg = btn.upload(add_file, [chatbot, btn], [chatbot], queue=False, postprocess=False)
img_msg = img_btn.upload(add_img, [chatbot, img_btn], [chatbot], queue=False, postprocess=False)
with gr.Accordion("Import/Export", open = False):
import_button = gr.UploadButton("History Import")
export_button = gr.Button("History Export")
export_button.click(lambda: None, [chatbot], js="""
(chat_history) => {
// Convert the chat history to a JSON string
const history_json = JSON.stringify(chat_history);
// Create a Blob from the JSON string
const blob = new Blob([history_json], {type: 'application/json'});
// Create a download link
const url = URL.createObjectURL(blob);
const a = document.createElement('a');
a.href = url;
a.download = 'chat_history.json';
document.body.appendChild(a);
a.click();
document.body.removeChild(a);
URL.revokeObjectURL(url);
}
""")
dl_button = gr.Button("File download")
dl_button.click(lambda: None, [chatbot], js="""
(chat_history) => {
// Attempt to extract content enclosed in backticks with an optional filename
const contentRegex = /```(\\S*\\.(\\S+))?\\n?([\\s\\S]*?)```/;
const match = contentRegex.exec(chat_history[chat_history.length - 1][1]);
if (match && match[3]) {
// Extract the content and the file extension
const content = match[3];
const fileExtension = match[2] || 'txt'; // Default to .txt if extension is not found
const filename = match[1] || `download.${fileExtension}`;
// Create a Blob from the content
const blob = new Blob([content], {type: `text/${fileExtension}`});
// Create a download link for the Blob
const url = URL.createObjectURL(blob);
const a = document.createElement('a');
a.href = url;
// If the filename from the chat history doesn't have an extension, append the default
a.download = filename.includes('.') ? filename : `${filename}.${fileExtension}`;
document.body.appendChild(a);
a.click();
document.body.removeChild(a);
URL.revokeObjectURL(url);
} else {
// Inform the user if the content is malformed or missing
alert('Sorry, the file content could not be found or is in an unrecognized format.');
}
}
""")
import_button.upload(import_history, inputs=[chatbot, import_button], outputs=[chatbot])
demo.queue().launch() |