File size: 10,601 Bytes
901d428
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
import streamlit as st
import openai
from openai import OpenAI
import os, base64, cv2, glob
from moviepy.editor import VideoFileClip
from datetime import datetime
import pytz
from audio_recorder_streamlit import audio_recorder

openai.api_key, openai.organization = os.getenv('OPENAI_API_KEY'), os.getenv('OPENAI_ORG_ID') 
client = OpenAI(api_key=os.getenv('OPENAI_API_KEY'), organization=os.getenv('OPENAI_ORG_ID'))

MODEL = "gpt-4o-2024-05-13"

if 'messages' not in st.session_state:
    st.session_state.messages = []

def generate_filename(prompt, file_type):
    central = pytz.timezone('US/Central')
    safe_date_time = datetime.now(central).strftime("%m%d_%H%M")
    safe_prompt = "".join(x for x in prompt.replace(" ", "_").replace("\n", "_") if x.isalnum() or x == "_")[:90]
    return f"{safe_date_time}_{safe_prompt}.{file_type}"

def create_file(filename, prompt, response, should_save=True):
    if should_save and os.path.splitext(filename)[1] in ['.txt', '.htm', '.md']:
        with open(os.path.splitext(filename)[0] + ".md", 'w', encoding='utf-8') as file:
            file.write(response)

def process_text(text_input):
    if text_input:
        st.session_state.messages.append({"role": "user", "content": text_input})
        with st.chat_message("user"):
            st.markdown(text_input)
        completion = client.chat.completions.create(model=MODEL, messages=[{"role": m["role"], "content": m["content"]} for m in st.session_state.messages], stream=False)
        return_text = completion.choices[0].message.content
        with st.chat_message("assistant"):
            st.markdown(return_text)
        filename = generate_filename(text_input, "md")
        create_file(filename, text_input, return_text)
        st.session_state.messages.append({"role": "assistant", "content": return_text})

def process_text2(MODEL='gpt-4o-2024-05-13', text_input='What is 2+2 and what is an imaginary number'):
    if text_input:
        st.session_state.messages.append({"role": "user", "content": text_input})
        completion = client.chat.completions.create(model=MODEL, messages=st.session_state.messages)
        return_text = completion.choices[0].message.content
        st.write("Assistant: " + return_text)
        filename = generate_filename(text_input, "md")
        create_file(filename, text_input, return_text, should_save=True)
        return return_text

def save_image(image_input, filename):
    with open(filename, "wb") as f:
        f.write(image_input.getvalue())
    return filename

def process_image(image_input):
    if image_input:
        with st.chat_message("user"):
            st.markdown('Processing image:  ' + image_input.name)
        base64_image = base64.b64encode(image_input.read()).decode("utf-8")
        st.session_state.messages.append({"role": "user", "content": [{"type": "text", "text": "Help me understand what is in this picture and list ten facts as markdown outline with appropriate emojis that describes what you see."}, {"type": "image_url", "image_url": {"url": f"data:image/png;base64,{base64_image}"}}]})
        response = client.chat.completions.create(model=MODEL, messages=st.session_state.messages, temperature=0.0)
        image_response = response.choices[0].message.content
        with st.chat_message("assistant"):
            st.markdown(image_response)
        filename_md, filename_img = generate_filename(image_input.name + '- ' + image_response, "md"), image_input.name
        create_file(filename_md, image_response, '', True)
        with open(filename_md, "w", encoding="utf-8") as f:
            f.write(image_response)
        save_image(image_input, filename_img)
        st.session_state.messages.append({"role": "assistant", "content": image_response})
        return image_response

def process_audio(audio_input):
    if audio_input:
        st.session_state.messages.append({"role": "user", "content": audio_input})
        transcription = client.audio.transcriptions.create(model="whisper-1", file=audio_input)
        response = client.chat.completions.create(model=MODEL, messages=[{"role": "system", "content":"You are generating a transcript summary. Create a summary of the provided transcription. Respond in Markdown."}, {"role": "user", "content": [{"type": "text", "text": f"The audio transcription is: {transcription.text}"}]}], temperature=0)
        audio_response = response.choices[0].message.content
        with st.chat_message("assistant"):
            st.markdown(audio_response)
        filename = generate_filename(transcription.text, "md")
        create_file(filename, transcription.text, audio_response, should_save=True)
        st.session_state.messages.append({"role": "assistant", "content": audio_response})

def process_audio_and_video(video_input):
    if video_input is not None:
        video_path = save_video(video_input)
        base64Frames, audio_path = process_video(video_path, seconds_per_frame=1)
        transcript = process_audio_for_video(video_input)
        st.session_state.messages.append({"role": "user", "content": ["These are the frames from the video.", *map(lambda x: {"type": "image_url", "image_url": {"url": f'data:image/jpg;base64,{x}', "detail": "low"}}, base64Frames), {"type": "text", "text": f"The audio transcription is: {transcript}"}]})
        response = client.chat.completions.create(model=MODEL, messages=st.session_state.messages, temperature=0)
        video_response = response.choices[0].message.content
        with st.chat_message("assistant"):
            st.markdown(video_response)
        filename = generate_filename(transcript, "md")
        create_file(filename, transcript, video_response, should_save=True)
        st.session_state.messages.append({"role": "assistant", "content": video_response})

def process_audio_for_video(video_input):
    if video_input:
        st.session_state.messages.append({"role": "user", "content": video_input})
        transcription = client.audio.transcriptions.create(model="whisper-1", file=video_input)
        response = client.chat.completions.create(model=MODEL, messages=[{"role": "system", "content":"You are generating a transcript summary. Create a summary of the provided transcription. Respond in Markdown."}, {"role": "user", "content": [{"type": "text", "text": f"The audio transcription is: {transcription}"}]}], temperature=0)
        video_response = response.choices[0].message.content
        with st.chat_message("assistant"):
            st.markdown(video_response)
        filename = generate_filename(transcription, "md")
        create_file(filename, transcription, video_response, should_save=True)
        st.session_state.messages.append({"role": "assistant", "content": video_response})
        return video_response

def save_video(video_file):
    with open(video_file.name, "wb") as f:
        f.write(video_file.getbuffer())
    return video_file.name

def process_video(video_path, seconds_per_frame=2):
    base64Frames, base_video_path = [], os.path.splitext(video_path)[0]
    video, total_frames, fps = cv2.VideoCapture(video_path), int(cv2.VideoCapture(video_path).get(cv2.CAP_PROP_FRAME_COUNT)), cv2.VideoCapture(video_path).get(cv2.CAP_PROP_FPS)
    curr_frame, frames_to_skip = 0, int(fps * seconds_per_frame)
    while curr_frame < total_frames - 1:
        video.set(cv2.CAP_PROP_POS_FRAMES, curr_frame)
        success, frame = video.read()
        if not success: break
        _, buffer = cv2.imencode(".jpg", frame)
        base64Frames.append(base64.b64encode(buffer).decode("utf-8"))
        curr_frame += frames_to_skip
    video.release()
    audio_path = f"{base_video_path}.mp3"
    clip = VideoFileClip(video_path)
    clip.audio.write_audiofile(audio_path, bitrate="32k")
    clip.audio.close()
    clip.close()
    print(f"Extracted {len(base64Frames)} frames")
    print(f"Extracted audio to {audio_path}")
    return base64Frames, audio_path

def save_and_play_audio(audio_recorder):
    audio_bytes = audio_recorder(key='audio_recorder')
    if audio_bytes:
        filename = generate_filename("Recording", "wav")
        with open(filename, 'wb') as f:
            f.write(audio_bytes)
        st.audio(audio_bytes, format="audio/wav")
        return filename
    return None

def main():
    st.markdown("##### GPT-4o Omni Model: Text, Audio, Image, & Video")
    option = st.selectbox("Select an option", ("Text", "Image", "Audio", "Video"))
    if option == "Text":
        text_input = st.chat_input("Enter your text:")
        if text_input:
            process_text(text_input)
    elif option == "Image":
        image_input = st.file_uploader("Upload an image", type=["jpg", "jpeg", "png"])
        process_image(image_input)
    elif option == "Audio":
        audio_input = st.file_uploader("Upload an audio file", type=["mp3", "wav"])
        process_audio(audio_input)
    elif option == "Video":
        video_input = st.file_uploader("Upload a video file", type=["mp4"])
        process_audio_and_video(video_input)

    all_files = sorted(glob.glob("*.md"), key=lambda x: (os.path.splitext(x)[1], x), reverse=True)
    all_files = [file for file in all_files if len(os.path.splitext(file)[0]) >= 10]
    st.sidebar.title("File Gallery")
    for file in all_files:
        with st.sidebar.expander(file), open(file, "r", encoding="utf-8") as f:
            st.code(f.read(), language="markdown")

    if prompt := st.chat_input("GPT-4o Multimodal ChatBot - What can I help you with?"):
        st.session_state.messages.append({"role": "user", "content": prompt})
        with st.chat_message("user"):
            st.markdown(prompt)
        with st.chat_message("assistant"):
            completion = client.chat.completions.create(model=MODEL, messages=st.session_state.messages, stream=True)
            response = process_text2(text_input=prompt)
        st.session_state.messages.append({"role": "assistant", "content": response})

    filename = save_and_play_audio(audio_recorder)
    if filename is not None:
        transcript = transcribe_canary(filename)
        result = search_arxiv(transcript)
        st.session_state.messages.append({"role": "user", "content": transcript})
        with st.chat_message("user"):
            st.markdown(transcript)
        with st.chat_message("assistant"):
            completion = client.chat.completions.create(model=MODEL, messages=st.session_state.messages, stream=True)
            response = process_text2(text_input=prompt)
        st.session_state.messages.append({"role": "assistant", "content": response})

if __name__ == "__main__":
    main()