File size: 1,366 Bytes
691f4df
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
import solara
import torch
import torch.nn.functional as F
import pandas as pd
from transformers import AutoTokenizer, AutoModelForCausalLM

tokenizer = AutoTokenizer.from_pretrained('gpt2')
model = AutoModelForCausalLM.from_pretrained('gpt2')
text1 = solara.reactive("Alan Turing theorized that computers would one day become")
@solara.component
def Page():
  with solara.Card(margin=0):
    solara.Markdown("#Next token prediction visualization")
    def on_action_cell(column, row_index):
      text1.value += tokenizer.decode(top_10.indices[0][row_index])
    cell_actions = [solara.CellAction(icon="mdi-thumb-up", name="Select", on_click=on_action_cell)]
    solara.InputText("Enter text:", value=text1, continuous_update=True)
    if text1.value != "":
      tokens = tokenizer.encode(text1.value, return_tensors="pt")
      outputs = model.generate(tokens, max_new_tokens=1, output_scores=True, return_dict_in_generate=True, pad_token_id=tokenizer.eos_token_id)
      scores = F.softmax(outputs.scores[0], dim=-1)
      top_10 = torch.topk(scores, 10)
      df = pd.DataFrame()
      df["probs"] = top_10.values[0]
      df["probs"] = [f"{value:.2%}" for value in df["probs"].values]
      df["predicted next token"] = [tokenizer.decode(top_10.indices[0][i]) for i in range(10)]
      solara.DataFrame(df, items_per_page=10, cell_actions=cell_actions)
Page()