Spaces:
Runtime error
Runtime error
File size: 2,730 Bytes
4f7080f c8c0b44 8e98aef a0d9618 e9cd936 8e98aef e9cd936 8e98aef e9cd936 8e98aef e9cd936 8e98aef e9cd936 8e98aef e9cd936 8e98aef e9cd936 767bc69 e9cd936 8e98aef e9cd936 8e98aef 767bc69 8e98aef |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 |
import os
os.system("pip install -r requirements.txt")
os.system("pip freeze")
import gradio as gr
from transformers import AutoTokenizer, AutoModelForCausalLM, set_seed, pipeline
tokenizer = AutoTokenizer.from_pretrained("codeparrot/codeparrot-small-code-to-text")
model = AutoModelForCausalLM.from_pretrained("codeparrot/codeparrot-small-code-to-text")
pipe = pipeline("text-generation", model=model, tokenizer=tokenizer, num_return_sequences=1, device=-1)
def make_doctring(gen_prompt):
return gen_prompt + f"\n\n\"\"\"\nExplanation:"
def code_generation(gen_prompts, max_tokens=8, temperature=0.6, seed=42):
set_seed(seed)
prompts = [make_doctring(p) for p in gen_prompts]
generated_text = pipe(prompts, do_sample=True, top_p=0.95, temperature=temperature, max_length=max_tokens)[0]
return generated_text["generated_text"]
title = "Code Explainer"
description = "This is a space to convert Python code into english text explaining what it does using [codeparrot-small-code-to-text](https://huggingface.co/codeparrot/codeparrot-small-code-to-text),\
a code generation model for Python finetuned on [github-jupyter-code-to-text](https://huggingface.co/datasets/codeparrot/github-jupyter-code-to-text) a dataset of Python code followed by a docstring explaining it, the data was originally extracted from Jupyter notebooks."
EXAMPLES = [
["def sort_function(arr):\n n = len(arr)\n \n # Traverse through all array elements\n for i in range(n):\n \n # Last i elements are already in place\n for j in range(0, n-i-1):\n \n # traverse the array from 0 to n-i-1\n # Swap if the element found is greater\n # than the next element\n if arr[j] > arr[j+1]:\n arr[j], arr[j+1] = arr[j+1], arr[j]"],
["from sklearn import model_selection\nX_train, X_test, Y_train, Y_test = model_selection.train_test_split(X, Y, test_size=0.2)"],
["def load_text(filename):\n with open(filename, 'r') as f:\n text = f.read()\n return text"]
]
iface = gr.Interface(
fn=code_generation,
inputs=[
gr.inputs.Code(language="python", label="Python code snippet", lines=10),
gr.inputs.Slider(minimum=8, maximum=256, step=1, default=256, label="Number of tokens to generate"),
gr.inputs.Slider(minimum=0, maximum=2.5, step=0.1, default=0.1, label="Temperature"),
gr.inputs.Slider(minimum=0, maximum=1000, step=1, default=42, label="Random seed")
],
outputs=gr.outputs.Code(language="text", label="Generated explanation", lines=10),
examples=EXAMPLES,
layout="horizontal",
theme="monochrome",
description=description,
title=title
)
iface.launch()
|