File size: 4,138 Bytes
08719d2
 
 
 
aa0a1b8
 
08719d2
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
aa0a1b8
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
08719d2
 
aa0a1b8
 
 
 
 
 
 
 
 
 
08719d2
 
 
aa0a1b8
 
08719d2
8022309
 
08719d2
 
 
 
 
8022309
bccd964
08719d2
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
7fe7a72
08719d2
 
 
 
 
 
 
 
7fe7a72
08719d2
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
import streamlit as st
from dotenv import load_dotenv
from PyPDF2 import PdfReader
from langchain.text_splitter import CharacterTextSplitter
from langchain.text_splitter import RecursiveCharacterTextSplitter

from langchain.embeddings import OpenAIEmbeddings, HuggingFaceInstructEmbeddings
from langchain.vectorstores import FAISS
from langchain.chat_models import ChatOpenAI
from langchain.memory import ConversationBufferMemory
from langchain.chains import ConversationalRetrievalChain
from htmlTemplates import css, bot_template, user_template
from langchain.llms import HuggingFaceHub

def get_pdf_text(pdf_docs):
    text = ""
    for pdf in pdf_docs:
        pdf_reader = PdfReader(pdf)
        for page in pdf_reader.pages:
            text += page.extract_text()
    return text

#@st.cache_resource
def split_texts(text, chunk_size, overlap, split_method):

    # Split texts
    # IN: text, chunk size, overlap, split_method
    # OUT: list of str splits

    st.info("`Splitting doc ...`")

    split_method = "RecursiveTextSplitter"
    text_splitter = RecursiveCharacterTextSplitter(
        chunk_size=chunk_size, chunk_overlap=overlap)

    splits = text_splitter.split_text(text)
    if not splits:
        st.error("Failed to split document")
        st.stop()

    return splits


def get_text_chunks(text):
    # text_splitter = CharacterTextSplitter(
    #     separator="\n",
    #     chunk_size=1000,
    #     chunk_overlap=200,
    #     length_function=len
    # )
    # chunks = text_splitter.split_text(text)

    chunks = split_texts(text, 1000, 200, "RecursiveCharacterTextSplitter")
    
    return chunks




def get_vectorstore(text_chunks):
    #embeddings = OpenAIEmbeddings()
    embeddings = HuggingFaceInstructEmbeddings(model_name="hkunlp/instructor-xl")
    vectorstore = FAISS.from_texts(texts=text_chunks, embedding=embeddings)
    return vectorstore


def get_conversation_chain(vectorstore):
    #llm = ChatOpenAI()
    llm = HuggingFaceHub(repo_id="google/flan-t5-xxl", model_kwargs={"temperature":0.5, "max_length":512})

    memory = ConversationBufferMemory(
        memory_key='chat_history', return_messages=True)
    conversation_chain = ConversationalRetrievalChain.from_llm(
        llm=llm,
        retriever=vectorstore.as_retriever(),
        memory=memory
    )
    return conversation_chain


def handle_userinput(user_question):
    response = st.session_state.conversation({'question': user_question})
    st.session_state.chat_history = response['chat_history']

    for i, message in enumerate(st.session_state.chat_history):
        if i % 2 == 0:
            st.write(user_template.replace(
                "{{MSG}}", message.content), unsafe_allow_html=True)
        else:
            st.write(bot_template.replace(
                "{{MSG}}", message.content), unsafe_allow_html=True)


def main():
    load_dotenv()
    st.set_page_config(page_title="Chat with your meeting notes!",
                       page_icon=":books:")
    st.write(css, unsafe_allow_html=True)

    if "conversation" not in st.session_state:
        st.session_state.conversation = None
    if "chat_history" not in st.session_state:
        st.session_state.chat_history = None

    st.header("Chat with your meeting notes! :books:")
    user_question = st.text_input("Ask a question about your documents:")
    if user_question:
        handle_userinput(user_question)

    with st.sidebar:
        st.subheader("Your documents")
        pdf_docs = st.file_uploader(
            "Upload your PDFs here and click on 'Process'", accept_multiple_files=True)
        if st.button("Process"):
            with st.spinner("Processing"):
                # get pdf text
                raw_text = get_pdf_text(pdf_docs)

                # get the text chunks
                text_chunks = get_text_chunks(raw_text)

                # create vector store
                vectorstore = get_vectorstore(text_chunks)

                # create conversation chain
                st.session_state.conversation = get_conversation_chain(
                    vectorstore)


if __name__ == '__main__':
    main()