Spaces:
Running
on
Zero
Running
on
Zero
File size: 43,584 Bytes
fed9294 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928 929 930 931 932 933 934 935 936 937 938 939 940 941 942 943 944 945 946 947 948 949 950 951 952 953 954 955 956 957 958 959 960 961 962 963 964 965 966 967 968 969 970 971 972 973 974 975 976 977 978 979 980 981 982 983 984 985 986 987 988 989 990 991 992 993 994 995 996 997 998 |
import contextlib
import os
import random
import warnings
from dataclasses import dataclass
from typing import Any, Callable, Dict, List, Optional, Union
import numpy as np
import torch
import torch.utils.checkpoint as checkpoint
from diffusers import FluxTransformer2DModel
from diffusers.image_processor import PipelineImageInput
from diffusers.pipelines.flux.pipeline_flux_kontext import PREFERRED_KONTEXT_RESOLUTIONS, calculate_shift, retrieve_timesteps
from scheduling_flow_match_euler_discrete import FlowMatchEulerDiscreteScheduler
from pipeline_flux_kontext import FluxKontextPipeline
from transformers.utils import is_peft_available
from trl.core import randn_tensor
from trl.models.sd_utils import convert_state_dict_to_diffusers
if is_peft_available():
from peft import LoraConfig, get_peft_model
from peft.utils import get_peft_model_state_dict
PREFERRED_KONTEXT_RESOLUTIONS = [(x[0]//2,x[1]//2) for x in PREFERRED_KONTEXT_RESOLUTIONS]
@dataclass
class FluxPipelineOutput:
"""
Output class for the diffusers pipeline to be finetuned with the DDPO trainer
Args:
images (`torch.Tensor`):
The generated images.
latents (`list[torch.Tensor]`):
The latents used to generate the images.
log_probs (`list[torch.Tensor]`):
The log probabilities of the latents.
"""
images: torch.Tensor
latents: torch.Tensor
log_probs: torch.Tensor
latent_ids: torch.Tensor
timesteps: torch.Tensor
image_latents: torch.Tensor
class DDPOFluxPipeline:
"""
Main class for the diffusers pipeline to be finetuned with the DDPO trainer
"""
def __call__(self, *args, **kwargs) -> FluxPipelineOutput:
raise NotImplementedError
@property
def transformer(self):
"""
Returns the 2d U-Net model used for diffusion.
"""
raise NotImplementedError
@property
def vae(self):
"""
Returns the Variational Autoencoder model used from mapping images to and from the latent space
"""
raise NotImplementedError
@property
def tokenizer(self):
"""
Returns the tokenizer used for tokenizing text inputs
"""
raise NotImplementedError
@property
def tokenizer_2(self):
"""
Returns the tokenizer used for tokenizing text inputs
"""
raise NotImplementedError
@property
def scheduler(self):
"""
Returns the scheduler associated with the pipeline used for the diffusion process
"""
raise NotImplementedError
@property
def text_encoder(self):
"""
Returns the text encoder used for encoding text inputs
"""
raise NotImplementedError
@property
def text_encoder_2(self):
"""
Returns the text encoder used for encoding text inputs
"""
raise NotImplementedError
@property
def image_encoder(self):
"""
Returns the text encoder used for encoding text inputs
"""
raise NotImplementedError
@property
def feature_extractor(self):
"""
Returns the text encoder used for encoding text inputs
"""
raise NotImplementedError
@property
def autocast(self):
"""
Returns the autocast context manager
"""
raise NotImplementedError
def set_progress_bar_config(self, *args, **kwargs):
"""
Sets the progress bar config for the pipeline
"""
raise NotImplementedError
def save_pretrained(self, *args, **kwargs):
"""
Saves all of the model weights
"""
raise NotImplementedError
def save_checkpoint(self, *args, **kwargs):
"""
Light wrapper around accelerate's register_save_state_pre_hook which is run before saving state
"""
raise NotImplementedError
def load_checkpoint(self, *args, **kwargs):
"""
Light wrapper around accelerate's register_lad_state_pre_hook which is run before loading state
"""
raise NotImplementedError
@torch.no_grad()
def pipeline_step(
self,
image: Optional[PipelineImageInput] = None,
prompt: Union[str, List[str]] = None,
prompt_2: Optional[Union[str, List[str]]] = None,
negative_prompt: Union[str, List[str]] = None,
negative_prompt_2: Optional[Union[str, List[str]]] = None,
true_cfg_scale: float = 1.0,
height: Optional[int] = None,
width: Optional[int] = None,
num_inference_steps: int = 28,
sigmas: Optional[List[float]] = None,
guidance_scale: float = 3.5,
num_images_per_prompt: Optional[int] = 1,
generator: Optional[Union[torch.Generator, List[torch.Generator]]] = None,
latents: Optional[torch.FloatTensor] = None,
prompt_embeds: Optional[torch.FloatTensor] = None,
pooled_prompt_embeds: Optional[torch.FloatTensor] = None,
ip_adapter_image: Optional[PipelineImageInput] = None,
ip_adapter_image_embeds: Optional[List[torch.Tensor]] = None,
negative_ip_adapter_image: Optional[PipelineImageInput] = None,
negative_ip_adapter_image_embeds: Optional[List[torch.Tensor]] = None,
negative_prompt_embeds: Optional[torch.FloatTensor] = None,
negative_pooled_prompt_embeds: Optional[torch.FloatTensor] = None,
output_type: Optional[str] = "pil",
return_dict: bool = True,
joint_attention_kwargs: Optional[Dict[str, Any]] = None,
callback_on_step_end: Optional[Callable[[int, int, Dict], None]] = None,
callback_on_step_end_tensor_inputs: List[str] = ["latents"],
max_sequence_length: int = 512,
max_area: int = 1024**2,
_auto_resize: bool = True,
):
r"""
Function invoked when calling the pipeline for generation.
Args:
image (`torch.Tensor`, `PIL.Image.Image`, `np.ndarray`, `List[torch.Tensor]`, `List[PIL.Image.Image]`, or `List[np.ndarray]`):
`Image`, numpy array or tensor representing an image batch to be used as the starting point. For both
numpy array and pytorch tensor, the expected value range is between `[0, 1]` If it's a tensor or a list
or tensors, the expected shape should be `(B, C, H, W)` or `(C, H, W)`. If it is a numpy array or a
list of arrays, the expected shape should be `(B, H, W, C)` or `(H, W, C)` It can also accept image
latents as `image`, but if passing latents directly it is not encoded again.
prompt (`str` or `List[str]`, *optional*):
The prompt or prompts to guide the image generation. If not defined, one has to pass `prompt_embeds`.
instead.
prompt_2 (`str` or `List[str]`, *optional*):
The prompt or prompts to be sent to `tokenizer_2` and `text_encoder_2`. If not defined, `prompt` is
will be used instead.
negative_prompt (`str` or `List[str]`, *optional*):
The prompt or prompts not to guide the image generation. If not defined, one has to pass
`negative_prompt_embeds` instead. Ignored when not using guidance (i.e., ignored if `true_cfg_scale` is
not greater than `1`).
negative_prompt_2 (`str` or `List[str]`, *optional*):
The prompt or prompts not to guide the image generation to be sent to `tokenizer_2` and
`text_encoder_2`. If not defined, `negative_prompt` is used in all the text-encoders.
true_cfg_scale (`float`, *optional*, defaults to 1.0):
When > 1.0 and a provided `negative_prompt`, enables true classifier-free guidance.
height (`int`, *optional*, defaults to self.transformer.config.sample_size * self.vae_scale_factor):
The height in pixels of the generated image. This is set to 1024 by default for the best results.
width (`int`, *optional*, defaults to self.transformer.config.sample_size * self.vae_scale_factor):
The width in pixels of the generated image. This is set to 1024 by default for the best results.
num_inference_steps (`int`, *optional*, defaults to 50):
The number of denoising steps. More denoising steps usually lead to a higher quality image at the
expense of slower inference.
sigmas (`List[float]`, *optional*):
Custom sigmas to use for the denoising process with schedulers which support a `sigmas` argument in
their `set_timesteps` method. If not defined, the default behavior when `num_inference_steps` is passed
will be used.
guidance_scale (`float`, *optional*, defaults to 3.5):
Guidance scale as defined in [Classifier-Free Diffusion
Guidance](https://huggingface.co/papers/2207.12598). `guidance_scale` is defined as `w` of equation 2.
of [Imagen Paper](https://huggingface.co/papers/2205.11487). Guidance scale is enabled by setting
`guidance_scale > 1`. Higher guidance scale encourages to generate images that are closely linked to
the text `prompt`, usually at the expense of lower image quality.
num_images_per_prompt (`int`, *optional*, defaults to 1):
The number of images to generate per prompt.
generator (`torch.Generator` or `List[torch.Generator]`, *optional*):
One or a list of [torch generator(s)](https://pytorch.org/docs/stable/generated/torch.Generator.html)
to make generation deterministic.
latents (`torch.FloatTensor`, *optional*):
Pre-generated noisy latents, sampled from a Gaussian distribution, to be used as inputs for image
generation. Can be used to tweak the same generation with different prompts. If not provided, a latents
tensor will ge generated by sampling using the supplied random `generator`.
prompt_embeds (`torch.FloatTensor`, *optional*):
Pre-generated text embeddings. Can be used to easily tweak text inputs, *e.g.* prompt weighting. If not
provided, text embeddings will be generated from `prompt` input argument.
pooled_prompt_embeds (`torch.FloatTensor`, *optional*):
Pre-generated pooled text embeddings. Can be used to easily tweak text inputs, *e.g.* prompt weighting.
If not provided, pooled text embeddings will be generated from `prompt` input argument.
ip_adapter_image: (`PipelineImageInput`, *optional*):
Optional image input to work with IP Adapters.
ip_adapter_image_embeds (`List[torch.Tensor]`, *optional*):
Pre-generated image embeddings for IP-Adapter. It should be a list of length same as number of
IP-adapters. Each element should be a tensor of shape `(batch_size, num_images, emb_dim)`. If not
provided, embeddings are computed from the `ip_adapter_image` input argument.
negative_ip_adapter_image:
(`PipelineImageInput`, *optional*): Optional image input to work with IP Adapters.
negative_ip_adapter_image_embeds (`List[torch.Tensor]`, *optional*):
Pre-generated image embeddings for IP-Adapter. It should be a list of length same as number of
IP-adapters. Each element should be a tensor of shape `(batch_size, num_images, emb_dim)`. If not
provided, embeddings are computed from the `ip_adapter_image` input argument.
negative_prompt_embeds (`torch.FloatTensor`, *optional*):
Pre-generated negative text embeddings. Can be used to easily tweak text inputs, *e.g.* prompt
weighting. If not provided, negative_prompt_embeds will be generated from `negative_prompt` input
argument.
negative_pooled_prompt_embeds (`torch.FloatTensor`, *optional*):
Pre-generated negative pooled text embeddings. Can be used to easily tweak text inputs, *e.g.* prompt
weighting. If not provided, pooled negative_prompt_embeds will be generated from `negative_prompt`
input argument.
output_type (`str`, *optional*, defaults to `"pil"`):
The output format of the generate image. Choose between
[PIL](https://pillow.readthedocs.io/en/stable/): `PIL.Image.Image` or `np.array`.
return_dict (`bool`, *optional*, defaults to `True`):
Whether or not to return a [`~pipelines.flux.FluxPipelineOutput`] instead of a plain tuple.
joint_attention_kwargs (`dict`, *optional*):
A kwargs dictionary that if specified is passed along to the `AttentionProcessor` as defined under
`self.processor` in
[diffusers.models.attention_processor](https://github.com/huggingface/diffusers/blob/main/src/diffusers/models/attention_processor.py).
callback_on_step_end (`Callable`, *optional*):
A function that calls at the end of each denoising steps during the inference. The function is called
with the following arguments: `callback_on_step_end(self: DiffusionPipeline, step: int, timestep: int,
callback_kwargs: Dict)`. `callback_kwargs` will include a list of all tensors as specified by
`callback_on_step_end_tensor_inputs`.
callback_on_step_end_tensor_inputs (`List`, *optional*):
The list of tensor inputs for the `callback_on_step_end` function. The tensors specified in the list
will be passed as `callback_kwargs` argument. You will only be able to include variables listed in the
`._callback_tensor_inputs` attribute of your pipeline class.
max_sequence_length (`int` defaults to 512):
Maximum sequence length to use with the `prompt`.
max_area (`int`, defaults to `1024 ** 2`):
The maximum area of the generated image in pixels. The height and width will be adjusted to fit this
area while maintaining the aspect ratio.
Examples:
Returns:
[`~pipelines.flux.FluxPipelineOutput`] or `tuple`: [`~pipelines.flux.FluxPipelineOutput`] if `return_dict`
is True, otherwise a `tuple`. When returning a tuple, the first element is a list with the generated
images.
"""
height = height or self.default_sample_size * self.vae_scale_factor
width = width or self.default_sample_size * self.vae_scale_factor
original_height, original_width = height, width
aspect_ratio = width / height
width = round((max_area * aspect_ratio) ** 0.5)
height = round((max_area / aspect_ratio) ** 0.5)
multiple_of = self.vae_scale_factor * 2
width = width // multiple_of * multiple_of
height = height // multiple_of * multiple_of
if height != original_height or width != original_width:
logger.warning(
f"Generation `height` and `width` have been adjusted to {height} and {width} to fit the model requirements."
)
# 1. Check inputs. Raise error if not correct
self.check_inputs(
prompt,
prompt_2,
height,
width,
negative_prompt=negative_prompt,
negative_prompt_2=negative_prompt_2,
prompt_embeds=prompt_embeds,
negative_prompt_embeds=negative_prompt_embeds,
pooled_prompt_embeds=pooled_prompt_embeds,
negative_pooled_prompt_embeds=negative_pooled_prompt_embeds,
callback_on_step_end_tensor_inputs=callback_on_step_end_tensor_inputs,
max_sequence_length=max_sequence_length,
)
self._guidance_scale = guidance_scale
self._joint_attention_kwargs = joint_attention_kwargs
self._current_timestep = None
self._interrupt = False
# 2. Define call parameters
if prompt is not None and isinstance(prompt, str):
batch_size = 1
elif prompt is not None and isinstance(prompt, list):
batch_size = len(prompt)
else:
batch_size = prompt_embeds.shape[0]
device = self._execution_device
lora_scale = (
self.joint_attention_kwargs.get("scale", None) if self.joint_attention_kwargs is not None else None
)
has_neg_prompt = negative_prompt is not None or (
negative_prompt_embeds is not None and negative_pooled_prompt_embeds is not None
)
do_true_cfg = true_cfg_scale > 1 and has_neg_prompt
(
prompt_embeds,
pooled_prompt_embeds,
text_ids,
) = self.encode_prompt(
prompt=prompt,
prompt_2=prompt_2,
prompt_embeds=prompt_embeds,
pooled_prompt_embeds=pooled_prompt_embeds,
device=device,
num_images_per_prompt=num_images_per_prompt,
max_sequence_length=max_sequence_length,
lora_scale=lora_scale,
)
if do_true_cfg:
(
negative_prompt_embeds,
negative_pooled_prompt_embeds,
negative_text_ids,
) = self.encode_prompt(
prompt=negative_prompt,
prompt_2=negative_prompt_2,
prompt_embeds=negative_prompt_embeds,
pooled_prompt_embeds=negative_pooled_prompt_embeds,
device=device,
num_images_per_prompt=num_images_per_prompt,
max_sequence_length=max_sequence_length,
lora_scale=lora_scale,
)
# 3. Preprocess image
if image is not None and not (isinstance(image, torch.Tensor) and image.size(1) == self.latent_channels):
imgs = image if isinstance(image, list) else [image]
images = []
for img in imgs:
img_0 = img[0] if isinstance(img, list) else img
image_height, image_width = self.image_processor.get_default_height_width(img_0)
aspect_ratio = image_width / image_height
if _auto_resize:
_, image_width, image_height = min(
(abs(aspect_ratio - w / h), w, h) for w, h in PREFERRED_KONTEXT_RESOLUTIONS
)
image_width = image_width // multiple_of * multiple_of
image_height = image_height // multiple_of * multiple_of
resized = self.image_processor.resize(img, image_height, image_width)
print(image_height, image_width)
processed = self.image_processor.preprocess(resized, image_height, image_width)
images.append(processed)
# 4. Prepare latent variables
num_channels_latents = self.transformer.config.in_channels // 4
latents, image_latents, latent_ids, image_ids = self.prepare_latents(
images,
batch_size * num_images_per_prompt,
num_channels_latents,
height,
width,
prompt_embeds.dtype,
device,
generator,
latents,
)
if image_ids is not None:
latent_ids = torch.cat([latent_ids, image_ids], dim=0) # dim 0 is sequence dimension
# 5. Prepare timesteps
sigmas = np.linspace(1.0, 1 / num_inference_steps, num_inference_steps) if sigmas is None else sigmas
image_seq_len = latents.shape[1]
mu = calculate_shift(
image_seq_len,
self.scheduler.config.get("base_image_seq_len", 256),
self.scheduler.config.get("max_image_seq_len", 4096),
self.scheduler.config.get("base_shift", 0.5),
self.scheduler.config.get("max_shift", 1.15),
)
timesteps, num_inference_steps = retrieve_timesteps(
self.scheduler,
num_inference_steps,
device,
sigmas=sigmas,
mu=mu,
)
num_warmup_steps = max(len(timesteps) - num_inference_steps * self.scheduler.order, 0)
self._num_timesteps = len(timesteps)
# handle guidance
if self.transformer.config.guidance_embeds:
guidance = torch.full([1], guidance_scale, device=device, dtype=torch.float32)
guidance = guidance.expand(latents.shape[0])
else:
guidance = None
if (ip_adapter_image is not None or ip_adapter_image_embeds is not None) and (
negative_ip_adapter_image is None and negative_ip_adapter_image_embeds is None
):
negative_ip_adapter_image = np.zeros((width, height, 3), dtype=np.uint8)
negative_ip_adapter_image = [negative_ip_adapter_image] * self.transformer.encoder_hid_proj.num_ip_adapters
elif (ip_adapter_image is None and ip_adapter_image_embeds is None) and (
negative_ip_adapter_image is not None or negative_ip_adapter_image_embeds is not None
):
ip_adapter_image = np.zeros((width, height, 3), dtype=np.uint8)
ip_adapter_image = [ip_adapter_image] * self.transformer.encoder_hid_proj.num_ip_adapters
if self.joint_attention_kwargs is None:
self._joint_attention_kwargs = {}
image_embeds = None
negative_image_embeds = None
if ip_adapter_image is not None or ip_adapter_image_embeds is not None:
image_embeds = self.prepare_ip_adapter_image_embeds(
ip_adapter_image,
ip_adapter_image_embeds,
device,
batch_size * num_images_per_prompt,
)
if negative_ip_adapter_image is not None or negative_ip_adapter_image_embeds is not None:
negative_image_embeds = self.prepare_ip_adapter_image_embeds(
negative_ip_adapter_image,
negative_ip_adapter_image_embeds,
device,
batch_size * num_images_per_prompt,
)
# 6. Denoising loop
# We set the index here to remove DtoH sync, helpful especially during compilation.
# Check out more details here: https://github.com/huggingface/diffusers/pull/11696
all_latents = [latents]
all_log_probs = []
all_timesteps = []
self.scheduler.set_begin_index(0)
with self.progress_bar(total=num_inference_steps) as progress_bar:
for i, t in enumerate(timesteps):
if self.interrupt:
continue
self._current_timestep = t
if image_embeds is not None:
self._joint_attention_kwargs["ip_adapter_image_embeds"] = image_embeds
latent_model_input = latents
latent_model_input = latent_model_input.to(self.transformer.device)
if image_latents is not None:
latent_model_input = torch.cat([latents, image_latents], dim=1)
timestep = t.expand(latents.shape[0]).to(torch.float32)
noise_pred = self.transformer(
hidden_states=latent_model_input,
timestep=timestep / 1000,
guidance=guidance,
pooled_projections=pooled_prompt_embeds,
encoder_hidden_states=prompt_embeds,
txt_ids=text_ids,
img_ids=latent_ids,
joint_attention_kwargs=self.joint_attention_kwargs,
return_dict=False,
)[0]
noise_pred = noise_pred[:, : latents.size(1)]
if do_true_cfg:
if negative_image_embeds is not None:
self._joint_attention_kwargs["ip_adapter_image_embeds"] = negative_image_embeds
neg_noise_pred = self.transformer(
hidden_states=latent_model_input,
timestep=timestep / 1000,
guidance=guidance,
pooled_projections=negative_pooled_prompt_embeds,
encoder_hidden_states=negative_prompt_embeds,
txt_ids=negative_text_ids,
img_ids=latent_ids,
joint_attention_kwargs=self.joint_attention_kwargs,
return_dict=False,
)[0]
neg_noise_pred = neg_noise_pred[:, : latents.size(1)]
noise_pred = neg_noise_pred + true_cfg_scale * (noise_pred - neg_noise_pred)
# compute the previous noisy sample x_t -> x_t-1
latents_dtype = latents.dtype
scheduler_output = self.scheduler.step(noise_pred, t, latents, return_dict=True)
latents = scheduler_output.latents
log_probs = scheduler_output.log_probs
all_latents.append(latents)
all_log_probs.append(log_probs)
all_timesteps.append(timestep)
if latents.dtype != latents_dtype:
latents = latents.to(latents_dtype)
if callback_on_step_end is not None:
callback_kwargs = {}
for k in callback_on_step_end_tensor_inputs:
callback_kwargs[k] = locals()[k]
callback_outputs = callback_on_step_end(self, i, t, callback_kwargs)
latents = callback_outputs.pop("latents", latents)
prompt_embeds = callback_outputs.pop("prompt_embeds", prompt_embeds)
# call the callback, if provided
if i == len(timesteps) - 1 or ((i + 1) > num_warmup_steps and (i + 1) % self.scheduler.order == 0):
progress_bar.update()
self._current_timestep = None
if output_type == "latent":
image = latents
else:
latents = self._unpack_latents(latents, height, width, self.vae_scale_factor)
latents = (latents / self.vae.config.scaling_factor) + self.vae.config.shift_factor
image = self.vae.decode(latents, return_dict=False)[0]
image = self.image_processor.postprocess(image, output_type=output_type)
# Offload all models
self.maybe_free_model_hooks()
if not return_dict:
return (image,)
return FluxPipelineOutput(image, all_latents, all_log_probs, latent_ids, all_timesteps, image_latents)
def pipeline_step_with_grad(
pipeline,
image: Optional[PipelineImageInput] = None,
prompt: Union[str, List[str]] = None,
prompt_2: Optional[Union[str, List[str]]] = None,
negative_prompt: Union[str, List[str]] = None,
negative_prompt_2: Optional[Union[str, List[str]]] = None,
true_cfg_scale: float = 1.0,
height: Optional[int] = None,
width: Optional[int] = None,
num_inference_steps: int = 28,
sigmas: Optional[List[float]] = None,
guidance_scale: float = 3.5,
truncated_backprop: bool = True,
truncated_backprop_rand: bool = True,
gradient_checkpoint: bool = True,
truncated_backprop_timestep: int = 49,
truncated_rand_backprop_minmax: tuple = (0, 50),
num_images_per_prompt: Optional[int] = 1,
generator: Optional[Union[torch.Generator, List[torch.Generator]]] = None,
latents: Optional[torch.FloatTensor] = None,
prompt_embeds: Optional[torch.FloatTensor] = None,
pooled_prompt_embeds: Optional[torch.FloatTensor] = None,
ip_adapter_image: Optional[PipelineImageInput] = None,
ip_adapter_image_embeds: Optional[List[torch.Tensor]] = None,
negative_ip_adapter_image: Optional[PipelineImageInput] = None,
negative_ip_adapter_image_embeds: Optional[List[torch.Tensor]] = None,
negative_prompt_embeds: Optional[torch.FloatTensor] = None,
negative_pooled_prompt_embeds: Optional[torch.FloatTensor] = None,
output_type: Optional[str] = "pil",
return_dict: bool = True,
joint_attention_kwargs: Optional[Dict[str, Any]] = None,
callback_on_step_end: Optional[Callable[[int, int, Dict], None]] = None,
callback_on_step_end_tensor_inputs: List[str] = ["latents"],
max_sequence_length: int = 512,
max_area: int = 512**2,
_auto_resize: bool = True,
):
height = height or pipeline.default_sample_size * pipeline.vae_scale_factor
width = width or pipeline.default_sample_size * pipeline.vae_scale_factor
original_height, original_width = height, width
aspect_ratio = width / height
width = round((max_area * aspect_ratio) ** 0.5)
height = round((max_area / aspect_ratio) ** 0.5)
multiple_of = pipeline.vae_scale_factor * 2
width = width // multiple_of * multiple_of
height = height // multiple_of * multiple_of
if height != original_height or width != original_width:
logger.warning(
f"Generation `height` and `width` have been adjusted to {height} and {width} to fit the model requirements."
)
# 1. Check inputs. Raise error if not correct
pipeline.check_inputs(
prompt,
prompt_2,
height,
width,
negative_prompt=negative_prompt,
negative_prompt_2=negative_prompt_2,
prompt_embeds=prompt_embeds,
negative_prompt_embeds=negative_prompt_embeds,
pooled_prompt_embeds=pooled_prompt_embeds,
negative_pooled_prompt_embeds=negative_pooled_prompt_embeds,
callback_on_step_end_tensor_inputs=callback_on_step_end_tensor_inputs,
max_sequence_length=max_sequence_length,
)
pipeline._guidance_scale = guidance_scale
pipeline._joint_attention_kwargs = joint_attention_kwargs
pipeline._current_timestep = None
pipeline._interrupt = False
# 2. Define call parameters
if prompt is not None and isinstance(prompt, str):
batch_size = 1
elif prompt is not None and isinstance(prompt, list):
batch_size = len(prompt)
else:
batch_size = prompt_embeds.shape[0]
device = pipeline._execution_device
lora_scale = (
pipeline.joint_attention_kwargs.get("scale", None) if pipeline.joint_attention_kwargs is not None else None
)
has_neg_prompt = negative_prompt is not None or (
negative_prompt_embeds is not None and negative_pooled_prompt_embeds is not None
)
do_true_cfg = true_cfg_scale > 1 and has_neg_prompt
(
prompt_embeds,
pooled_prompt_embeds,
text_ids,
) = pipeline.encode_prompt(
prompt=prompt,
prompt_2=prompt_2,
prompt_embeds=prompt_embeds,
pooled_prompt_embeds=pooled_prompt_embeds,
device=device,
num_images_per_prompt=num_images_per_prompt,
max_sequence_length=max_sequence_length,
lora_scale=lora_scale,
)
if do_true_cfg:
(
negative_prompt_embeds,
negative_pooled_prompt_embeds,
negative_text_ids,
) = pipeline.encode_prompt(
prompt=negative_prompt,
prompt_2=negative_prompt_2,
prompt_embeds=negative_prompt_embeds,
pooled_prompt_embeds=negative_pooled_prompt_embeds,
device=device,
num_images_per_prompt=num_images_per_prompt,
max_sequence_length=max_sequence_length,
lora_scale=lora_scale,
)
# 3. Preprocess image
# if image is not None and not (isinstance(image, torch.Tensor) and image.size(1) == pipeline.latent_channels):
# img = image[0] if isinstance(image, list) else image
# image_height, image_width = pipeline.image_processor.get_default_height_width(img)
# aspect_ratio = image_width / image_height
# if _auto_resize:
# # Kontext is trained on specific resolutions, using one of them is recommended
# _, image_width, image_height = min(
# (abs(aspect_ratio - w / h), w, h) for w, h in PREFERRED_KONTEXT_RESOLUTIONS
# )
# image_width = image_width // multiple_of * multiple_of
# image_height = image_height // multiple_of * multiple_of
# image = pipeline.image_processor.resize(image, image_height, image_width)
# image = pipeline.image_processor.preprocess(image, image_height, image_width)
if image is not None and not (isinstance(image, torch.Tensor) and image.size(1) == pipeline.latent_channels):
imgs = image if isinstance(image, list) else [image]
images = []
for img in imgs:
img_0 = img[0] if isinstance(img, list) else img
image_height, image_width = pipeline.image_processor.get_default_height_width(img_0)
aspect_ratio = image_width / image_height
if _auto_resize:
_, image_width, image_height = min(
(abs(aspect_ratio - w / h), w, h) for w, h in PREFERRED_KONTEXT_RESOLUTIONS
)
image_width = image_width // multiple_of * multiple_of
image_height = image_height // multiple_of * multiple_of
resized = pipeline.image_processor.resize(img, image_height, image_width)
processed = pipeline.image_processor.preprocess(resized, image_height, image_width)
images.append(processed)
# 4. Prepare latent variables
# num_channels_latents = pipeline.transformer.module.config.in_channels // 4
num_channels_latents = pipeline.transformer.config.in_channels // 4
latents, image_latents, latent_ids, image_ids = pipeline.prepare_latents(
images,
batch_size * num_images_per_prompt,
num_channels_latents,
height,
width,
prompt_embeds.dtype,
device,
generator,
latents,
)
if image_ids is not None:
latent_ids = torch.cat([latent_ids, image_ids], dim=0) # dim 0 is sequence dimension
# 5. Prepare timesteps
sigmas = np.linspace(1.0, 1 / num_inference_steps, num_inference_steps) if sigmas is None else sigmas
image_seq_len = latents.shape[1]
mu = calculate_shift(
image_seq_len,
pipeline.scheduler.config.get("base_image_seq_len", 256),
pipeline.scheduler.config.get("max_image_seq_len", 4096),
pipeline.scheduler.config.get("base_shift", 0.5),
pipeline.scheduler.config.get("max_shift", 1.15),
)
timesteps, num_inference_steps = retrieve_timesteps(
pipeline.scheduler,
num_inference_steps,
device,
sigmas=sigmas,
mu=mu,
)
num_warmup_steps = max(len(timesteps) - num_inference_steps * pipeline.scheduler.order, 0)
pipeline._num_timesteps = len(timesteps)
# handle guidance
if pipeline.transformer.config.guidance_embeds:
guidance = torch.full([1], guidance_scale, device=device, dtype=torch.float32)
guidance = guidance.expand(latents.shape[0])
else:
guidance = None
if (ip_adapter_image is not None or ip_adapter_image_embeds is not None) and (
negative_ip_adapter_image is None and negative_ip_adapter_image_embeds is None
):
negative_ip_adapter_image = np.zeros((width, height, 3), dtype=np.uint8)
negative_ip_adapter_image = [negative_ip_adapter_image] * pipeline.transformer.encoder_hid_proj.num_ip_adapters
elif (ip_adapter_image is None and ip_adapter_image_embeds is None) and (
negative_ip_adapter_image is not None or negative_ip_adapter_image_embeds is not None
):
ip_adapter_image = np.zeros((width, height, 3), dtype=np.uint8)
ip_adapter_image = [ip_adapter_image] * pipeline.transformer.encoder_hid_proj.num_ip_adapters
if pipeline.joint_attention_kwargs is None:
pipeline._joint_attention_kwargs = {}
image_embeds = None
negative_image_embeds = None
if ip_adapter_image is not None or ip_adapter_image_embeds is not None:
image_embeds = pipeline.prepare_ip_adapter_image_embeds(
ip_adapter_image,
ip_adapter_image_embeds,
device,
batch_size * num_images_per_prompt,
)
if negative_ip_adapter_image is not None or negative_ip_adapter_image_embeds is not None:
negative_image_embeds = pipeline.prepare_ip_adapter_image_embeds(
negative_ip_adapter_image,
negative_ip_adapter_image_embeds,
device,
batch_size * num_images_per_prompt,
)
all_latents = [latents]
all_log_probs = []
all_timesteps = []
pipeline.scheduler.set_begin_index(0)
with pipeline.progress_bar(total=num_inference_steps) as progress_bar:
for i, t in enumerate(timesteps):
if pipeline.interrupt:
continue
pipeline._current_timestep = t
if image_embeds is not None:
pipeline._joint_attention_kwargs["ip_adapter_image_embeds"] = image_embeds
latent_model_input = latents
if image_latents is not None:
latent_model_input = torch.cat([latents, image_latents], dim=1)
timestep = t.expand(latents.shape[0]).to(latents.dtype)
if gradient_checkpoint:
noise_pred = checkpoint.checkpoint(
pipeline.transformer,
hidden_states=latent_model_input,
timestep=timestep / 1000,
guidance=guidance,
pooled_projections=pooled_prompt_embeds,
encoder_hidden_states=prompt_embeds,
txt_ids=text_ids,
img_ids=latent_ids,
joint_attention_kwargs=pipeline.joint_attention_kwargs,
return_dict=False,
)[0]
else:
noise_pred = pipeline.transformer(
hidden_states=latent_model_input,
timestep=timestep / 1000,
guidance=guidance,
pooled_projections=pooled_prompt_embeds,
encoder_hidden_states=prompt_embeds,
txt_ids=text_ids,
img_ids=latent_ids,
joint_attention_kwargs=pipeline.joint_attention_kwargs,
return_dict=False,
)[0]
noise_pred = noise_pred[:, : latents.size(1)]
if truncated_backprop:
# Randomized truncation randomizes the truncation process (https://huggingface.co/papers/2310.03739)
# the range of truncation is defined by truncated_rand_backprop_minmax
# Setting truncated_rand_backprop_minmax[0] to be low will allow the model to update earlier timesteps in the diffusion chain, while setitng it high will reduce the memory usage.
if truncated_backprop_rand:
rand_timestep = random.randint(
truncated_rand_backprop_minmax[0], truncated_rand_backprop_minmax[1]
)
if i < rand_timestep:
noise_pred = noise_pred.detach()
else:
# fixed truncation process
if i < truncated_backprop_timestep:
noise_pred = noise_pred.detach()
if do_true_cfg:
if negative_image_embeds is not None:
pipeline._joint_attention_kwargs["ip_adapter_image_embeds"] = negative_image_embeds
neg_noise_pred = pipeline.transformer(
hidden_states=latent_model_input,
timestep=timestep / 1000,
guidance=guidance,
pooled_projections=negative_pooled_prompt_embeds,
encoder_hidden_states=negative_prompt_embeds,
txt_ids=negative_text_ids,
img_ids=latent_ids,
joint_attention_kwargs=pipeline.joint_attention_kwargs,
return_dict=False,
)[0]
neg_noise_pred = neg_noise_pred[:, : latents.size(1)]
noise_pred = neg_noise_pred + true_cfg_scale * (noise_pred - neg_noise_pred)
# compute the previous noisy sample x_t -> x_t-1
latents_dtype = latents.dtype
scheduler_output = pipeline.scheduler.step(noise_pred, t, latents, return_dict=True)
latents = scheduler_output.latents
log_probs = scheduler_output.log_probs
all_latents.append(latents)
all_log_probs.append(log_probs)
all_timesteps.append(timestep)
if latents.dtype != latents_dtype:
if torch.backends.mps.is_available():
# some platforms (eg. apple mps) misbehave due to a pytorch bug: https://github.com/pytorch/pytorch/pull/99272
latents = latents.to(latents_dtype)
if callback_on_step_end is not None:
callback_kwargs = {}
for k in callback_on_step_end_tensor_inputs:
callback_kwargs[k] = locals()[k]
callback_outputs = callback_on_step_end(self, i, t, callback_kwargs)
latents = callback_outputs.pop("latents", latents)
prompt_embeds = callback_outputs.pop("prompt_embeds", prompt_embeds)
# call the callback, if provided
if i == len(timesteps) - 1 or ((i + 1) > num_warmup_steps and (i + 1) % pipeline.scheduler.order == 0):
progress_bar.update()
pipeline._current_timestep = None
if output_type == "latent":
image = latents
else:
latents = pipeline._unpack_latents(latents, height, width, pipeline.vae_scale_factor)
latents = (latents / pipeline.vae.config.scaling_factor) + pipeline.vae.config.shift_factor
image = pipeline.vae.decode(latents, return_dict=False)[0]
image = pipeline.image_processor.postprocess(image, output_type=output_type)
# Offload all models
pipeline.maybe_free_model_hooks()
if not return_dict:
return (image,)
return FluxPipelineOutput(image, all_latents, all_log_probs, latent_ids, all_timesteps, image_latents)
class DefaultDDPOFluxPipeline(DDPOFluxPipeline):
def __init__(self, pretrained_model_name: str, finetuned_model_path: str=''):
self.flux_pipeline = FluxKontextPipeline.from_pretrained(
pretrained_model_name
)
self.pretrained_model = pretrained_model_name
self.flux_pipeline.scheduler = FlowMatchEulerDiscreteScheduler.from_config(self.flux_pipeline.scheduler.config)
self.flux_pipeline.scheduler.config.stochastic_sampling = True
# memory optimization
self.flux_pipeline.vae.requires_grad_(False)
self.flux_pipeline.text_encoder.requires_grad_(False)
self.flux_pipeline.text_encoder_2.requires_grad_(False)
self.flux_pipeline.transformer.requires_grad_(False)
if finetuned_model_path:
print(f"load finetuned model from {finetuned_model_path}")
self.flux_pipeline.transformer = FluxTransformer2DModel.from_single_file(finetuned_model_path, torch_dtype="bfloat16")
def __call__(self, *args, **kwargs) -> FluxPipelineOutput:
return pipeline_step(self.flux_pipeline, *args, **kwargs)
def rgb_with_grad(self, *args, **kwargs) -> FluxPipelineOutput:
return pipeline_step_with_grad(self.flux_pipeline, *args, **kwargs)
@property
def transformer(self):
return self.flux_pipeline.transformer
@property
def vae(self):
return self.flux_pipeline.vae
@property
def tokenizer(self):
return self.flux_pipeline.tokenizer
@property
def tokenizer_2(self):
return self.flux_pipeline.tokenizer_2
@property
def scheduler(self):
return self.flux_pipeline.scheduler
@property
def text_encoder(self):
return self.flux_pipeline.text_encoder
@property
def text_encoder_2(self):
return self.flux_pipeline.text_encoder_2
@property
def image_encoder(self):
return self.flux_pipeline.image_encoder
@property
def feature_extractor(self):
return self.flux_pipeline.feature_extractor
@property
def autocast(self):
return contextlib.nullcontext
def save_pretrained(self, output_dir):
state_dict = convert_state_dict_to_diffusers(get_peft_model_state_dict(self.flux_pipeline.transformer))
self.flux_pipeline.transformer.save_pretrained(output_dir)
def set_progress_bar_config(self, *args, **kwargs):
self.flux_pipeline.set_progress_bar_config(*args, **kwargs)
|