Spaces:
Sleeping
Sleeping
File size: 6,659 Bytes
bcd4798 d840e13 bcd4798 40c0e85 d840e13 bcd4798 40c0e85 bcd4798 d840e13 bcd4798 40c0e85 bcd4798 40c0e85 bcd4798 40c0e85 bcd4798 40c0e85 bcd4798 d840e13 5e944b9 40c0e85 bcd4798 d840e13 bcd4798 40c0e85 bcd4798 d840e13 bcd4798 40c0e85 bcd4798 40c0e85 bcd4798 d840e13 bcd4798 40c0e85 bcd4798 40c0e85 bcd4798 d840e13 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 |
import gradio as gr
import numpy as np
import random
from optimum.intel import OVStableDiffusionXLPipeline
import torch
# Default model ID
model_id = "None1145/noobai-XL-Vpred-0.65s-openvino"
pipe = OVStableDiffusionXLPipeline.from_pretrained(model_id)
# Initialize previous dimensions
prev_height = None
prev_width = None
MAX_SEED = np.iinfo(np.int32).max
MAX_IMAGE_SIZE = 2048
def reload_model(new_model_id):
global pipe, model_id
model_id = new_model_id
try:
pipe = OVStableDiffusionXLPipeline.from_pretrained(model_id)
return f"Model successfully loaded: {model_id}"
except Exception as e:
return f"Failed to load model: {str(e)}"
def infer(
prompt,
negative_prompt,
seed,
randomize_seed,
width,
height,
guidance_scale,
num_inference_steps,
progress=gr.Progress(track_tqdm=True),
):
global prev_width, prev_height, pipe
if randomize_seed:
seed = random.randint(0, MAX_SEED)
generator = torch.Generator().manual_seed(seed)
if prev_width != width or prev_height != height:
pipe.reshape(batch_size=1, height=height, width=width, num_images_per_prompt=1)
pipe.compile()
prev_width = width
prev_height = height
image = pipe(
prompt=prompt,
negative_prompt=negative_prompt,
guidance_scale=guidance_scale,
num_inference_steps=num_inference_steps,
width=width,
height=height,
generator=generator,
).images[0]
return image, seed
examples = [
"masterpiece,best quality,newest,absurdres,highres,takarada rikka,1girl,solo,artist:koruri,artist:haoni,artist:deadnooodles,artist:mishima_kurone,artist:yd orange maru,year 2023,black hair,smile,looking at viewer,one eye closed,pov,close-up,blue eyes,medium hair,pointing at viewer,orange scrunchie,:t,white shirt,school uniform,standing,cowboy shot,classroom,bent over,head rest,head tilt,face focus,",
"masterpiece,best quality,artist:john_kafka,artist:nixeu,artist:quasarcake, ,gritty,marcille donato,1girl, abstract background, ambrosia \(dungeon meshi\), backpack, bag, belt, belt pouch, blonde hair, blue capelet, blue shirt, book, book holster, capelet, elf, food, food in mouth, green eyes, grimoire, hair ribbon, holding, holding staff, kebab, multicolored background, pants, pointy ears, ponytail, pouch, red ribbon, ribbon, shirt, sideways glance, skewer, sleeping bag, sprout, staff, v-shaped eyebrows, white pants",
"kazusa \(blue archive\), reisa \(blue archive\),sfw,very awa,highres,absurdres,incredibly absurdres,masterpiece,oil painting \(medium\),Yasuda Akira,(henriiku (ahemaru):1.3),armored core,artist:ciloranko,artist:sho sho lwlw,(as109:0.7),ink (medium),, (2girls:1.5), black neckerchief, blue hair, buttons, double-breasted, drooling, grey serafuku, halo, light blue hair, midriff peek, multicolored hair, neckerchief, nose bubble, pink hair, pink halo, pleated skirt, refraction, saliva, school uniform, serafuku,skirt, sleeping, socks, star halo, striped clothes, striped socks,",
"1girl,,camellya \(wuthering waves\),,::, (by kana616:0.8), [(by hen-tie:1.3)|(by kagami_\(galgamesion\):1.2)], (by kinokohime:1.2), (by yatsuha_\(hachiyoh\):0.8), year 2024,,parted lips, looking at animal, upper body, profile, holding, centauroid, holding bouquet,,streaked hair, hair flower, multicolored hair, breasts, hair ornament, hair between eyes, jewelry, twintails, white hair,,animal ears, deer girl, flower wreath, white bird, off-shoulder shirt, shirt, sleeves past wrists, deer ears, off shoulder, head wreath, long sleeves,,blurry background, depth of field, bokeh, planted sword, red background, planted, red theme, bird, grass, flower, very awa, masterpiece, best quality, newest, highres, absurdres",
]
with gr.Blocks() as img:
gr.Markdown("# OpenVINO Text to Image")
with gr.Column(elem_id="col-container"):
with gr.Row():
prompt = gr.Text(
label="Prompt",
show_label=False,
max_lines=1,
placeholder="Enter your prompt",
container=False,
)
run_button = gr.Button("Run", scale=0, variant="primary")
result = gr.Image(label="Result", show_label=False)
with gr.Accordion("Advanced Settings", open=False):
negative_prompt = gr.Text(
label="Negative prompt",
max_lines=1,
placeholder="Enter a negative prompt",
visible=False,
)
seed = gr.Slider(
label="Seed",
minimum=0,
maximum=MAX_SEED,
step=1,
value=0,
)
randomize_seed = gr.Checkbox(label="Randomize seed", value=True)
with gr.Row():
width = gr.Slider(
label="Width",
minimum=512,
maximum=MAX_IMAGE_SIZE,
step=32,
value=832,
)
height = gr.Slider(
label="Height",
minimum=512,
maximum=MAX_IMAGE_SIZE,
step=32,
value=1216,
)
with gr.Row():
guidance_scale = gr.Slider(
label="Guidance scale",
minimum=0.0,
maximum=10.0,
step=0.1,
value=5.0,
)
num_inference_steps = gr.Slider(
label="Number of inference steps",
minimum=1,
maximum=60,
step=1,
value=28,
)
gr.Examples(examples=examples, inputs=[prompt])
gr.Markdown("### Model Reload")
with gr.Row():
new_model_id = gr.Text(label="New Model ID", placeholder="Enter new model ID")
reload_button = gr.Button("Reload Model", variant="primary")
reload_status = gr.Text(label="Status", interactive=False)
reload_button.click(
fn=reload_model,
inputs=new_model_id,
outputs=reload_status,
)
gr.on(
triggers=[run_button.click, prompt.submit],
fn=infer,
inputs=[
prompt,
negative_prompt,
seed,
randomize_seed,
width,
height,
guidance_scale,
num_inference_steps,
],
outputs=[result, seed],
)
if __name__ == "__main__":
img.launch()
|