File size: 6,659 Bytes
bcd4798
 
 
d840e13
bcd4798
 
40c0e85
d840e13
 
bcd4798
40c0e85
 
 
 
bcd4798
d840e13
bcd4798
40c0e85
 
 
 
 
 
 
 
 
bcd4798
 
 
 
 
 
 
 
 
 
 
40c0e85
 
bcd4798
 
 
 
 
40c0e85
 
 
 
 
 
bcd4798
 
 
 
 
 
 
 
 
 
 
 
 
 
40c0e85
 
 
 
bcd4798
 
d840e13
5e944b9
40c0e85
bcd4798
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
d840e13
bcd4798
 
40c0e85
bcd4798
 
 
 
d840e13
bcd4798
 
40c0e85
bcd4798
 
 
 
 
 
 
 
40c0e85
bcd4798
 
 
 
 
d840e13
bcd4798
40c0e85
bcd4798
 
 
40c0e85
 
 
 
 
 
 
 
 
 
 
 
 
bcd4798
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
d840e13
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
import gradio as gr
import numpy as np
import random
from optimum.intel import OVStableDiffusionXLPipeline
import torch

# Default model ID
model_id = "None1145/noobai-XL-Vpred-0.65s-openvino"
pipe = OVStableDiffusionXLPipeline.from_pretrained(model_id)

# Initialize previous dimensions
prev_height = None
prev_width = None

MAX_SEED = np.iinfo(np.int32).max
MAX_IMAGE_SIZE = 2048

def reload_model(new_model_id):
    global pipe, model_id
    model_id = new_model_id
    try:
        pipe = OVStableDiffusionXLPipeline.from_pretrained(model_id)
        return f"Model successfully loaded: {model_id}"
    except Exception as e:
        return f"Failed to load model: {str(e)}"

def infer(
    prompt,
    negative_prompt,
    seed,
    randomize_seed,
    width,
    height,
    guidance_scale,
    num_inference_steps,
    progress=gr.Progress(track_tqdm=True),
):
    global prev_width, prev_height, pipe

    if randomize_seed:
        seed = random.randint(0, MAX_SEED)

    generator = torch.Generator().manual_seed(seed)

    if prev_width != width or prev_height != height:
        pipe.reshape(batch_size=1, height=height, width=width, num_images_per_prompt=1)
        pipe.compile()
        prev_width = width
        prev_height = height

    image = pipe(
        prompt=prompt,
        negative_prompt=negative_prompt,
        guidance_scale=guidance_scale,
        num_inference_steps=num_inference_steps,
        width=width,
        height=height,
        generator=generator,
    ).images[0]

    return image, seed


examples = [
    "masterpiece,best quality,newest,absurdres,highres,takarada rikka,1girl,solo,artist:koruri,artist:haoni,artist:deadnooodles,artist:mishima_kurone,artist:yd orange maru,year 2023,black hair,smile,looking at viewer,one eye closed,pov,close-up,blue eyes,medium hair,pointing at viewer,orange scrunchie,:t,white shirt,school uniform,standing,cowboy shot,classroom,bent over,head rest,head tilt,face focus,",
    "masterpiece,best quality,artist:john_kafka,artist:nixeu,artist:quasarcake, ,gritty,marcille donato,1girl, abstract background, ambrosia \(dungeon meshi\), backpack, bag, belt, belt pouch, blonde hair, blue capelet, blue shirt, book, book holster, capelet, elf, food, food in mouth, green eyes, grimoire, hair ribbon, holding, holding staff, kebab, multicolored background, pants, pointy ears, ponytail, pouch, red ribbon, ribbon, shirt, sideways glance, skewer, sleeping bag, sprout, staff, v-shaped eyebrows, white pants",
    "kazusa \(blue archive\), reisa \(blue archive\),sfw,very awa,highres,absurdres,incredibly absurdres,masterpiece,oil painting \(medium\),Yasuda Akira,(henriiku (ahemaru):1.3),armored core,artist:ciloranko,artist:sho sho lwlw,(as109:0.7),ink (medium),, (2girls:1.5), black neckerchief, blue hair, buttons, double-breasted, drooling, grey serafuku, halo, light blue hair, midriff peek, multicolored hair, neckerchief, nose bubble, pink hair, pink halo, pleated skirt, refraction, saliva, school uniform, serafuku,skirt, sleeping, socks, star halo, striped clothes, striped socks,",
    "1girl,,camellya \(wuthering waves\),,::, (by kana616:0.8), [(by hen-tie:1.3)|(by kagami_\(galgamesion\):1.2)], (by kinokohime:1.2), (by yatsuha_\(hachiyoh\):0.8), year 2024,,parted lips, looking at animal, upper body, profile, holding, centauroid, holding bouquet,,streaked hair, hair flower, multicolored hair, breasts, hair ornament, hair between eyes, jewelry, twintails, white hair,,animal ears, deer girl, flower wreath, white bird, off-shoulder shirt, shirt, sleeves past wrists, deer ears, off shoulder, head wreath, long sleeves,,blurry background, depth of field, bokeh, planted sword, red background, planted, red theme, bird, grass, flower, very awa, masterpiece, best quality, newest, highres, absurdres",
]

with gr.Blocks() as img:
    gr.Markdown("# OpenVINO Text to Image")
    
    with gr.Column(elem_id="col-container"):
        with gr.Row():
            prompt = gr.Text(
                label="Prompt",
                show_label=False,
                max_lines=1,
                placeholder="Enter your prompt",
                container=False,
            )

            run_button = gr.Button("Run", scale=0, variant="primary")

        result = gr.Image(label="Result", show_label=False)

        with gr.Accordion("Advanced Settings", open=False):
            negative_prompt = gr.Text(
                label="Negative prompt",
                max_lines=1,
                placeholder="Enter a negative prompt",
                visible=False,
            )

            seed = gr.Slider(
                label="Seed",
                minimum=0,
                maximum=MAX_SEED,
                step=1,
                value=0,
            )

            randomize_seed = gr.Checkbox(label="Randomize seed", value=True)

            with gr.Row():
                width = gr.Slider(
                    label="Width",
                    minimum=512,
                    maximum=MAX_IMAGE_SIZE,
                    step=32,
                    value=832,
                )

                height = gr.Slider(
                    label="Height",
                    minimum=512,
                    maximum=MAX_IMAGE_SIZE,
                    step=32,
                    value=1216,
                )

            with gr.Row():
                guidance_scale = gr.Slider(
                    label="Guidance scale",
                    minimum=0.0,
                    maximum=10.0,
                    step=0.1,
                    value=5.0,
                )

                num_inference_steps = gr.Slider(
                    label="Number of inference steps",
                    minimum=1,
                    maximum=60,
                    step=1,
                    value=28,
                )

        gr.Examples(examples=examples, inputs=[prompt])
    
    gr.Markdown("### Model Reload")
    with gr.Row():
        new_model_id = gr.Text(label="New Model ID", placeholder="Enter new model ID")
        reload_button = gr.Button("Reload Model", variant="primary")
        reload_status = gr.Text(label="Status", interactive=False)

    reload_button.click(
        fn=reload_model,
        inputs=new_model_id,
        outputs=reload_status,
    )

    gr.on(
        triggers=[run_button.click, prompt.submit],
        fn=infer,
        inputs=[
            prompt,
            negative_prompt,
            seed,
            randomize_seed,
            width,
            height,
            guidance_scale,
            num_inference_steps,
        ],
        outputs=[result, seed],
    )

if __name__ == "__main__":
    img.launch()