File size: 8,110 Bytes
e7b9fb6
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
#  Copyright (c) 2025 Bytedance Ltd. and/or its affiliates
# 
#  Licensed under the Apache License, Version 2.0 (the "License");
#  you may not use this file except in compliance with the License.
#  You may obtain a copy of the License at
# 
#  http://www.apache.org/licenses/LICENSE-2.0
# 
#  Unless required by applicable law or agreed to in writing, software
#  distributed under the License is distributed on an "AS IS" BASIS,
#  WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
#  See the License for the specific language governing permissions and
#  limitations under the License.
import torch
from torch import nn
from transformers import AutoModelForCausalLM
from third_party.Michelangelo.encode import load_model
from skeleton_models.shape_opt import ShapeOPTConfig

def undiscretize(t, low, high, num_discrete):
    assert (t >= 0).all() and (t <= num_discrete-1).all()
    assert high > low
    t = t.float()
    t /= num_discrete
    t = t * (high - low) + low
    assert (t < high).all() and (t >= low).all()
    return t

class SkeletonGPT(nn.Module):
    def __init__(self, args):
        super().__init__()

        self.args = args
        self.point_encoder = load_model()
      
        self.cond_length = 257
        self.cond_dim = 768
    
        self.n_discrete_size = args.n_discrete_size

        self.bone_per_token = 6  # (2 joints per bone)
        self.max_length = int(args.n_max_bones * self.bone_per_token + 2 + self.cond_length)
        self.pad_id = -1
        
        self.coor_continuous_range = (-0.5, 0.5)

        vocab_size = self.n_discrete_size + 3 # 3 for bos, eos, pad
        self.config = ShapeOPTConfig.from_pretrained(
            args.llm,
            n_positions=self.max_length,
            max_position_embeddings=self.max_length,
            vocab_size = vocab_size,
            _attn_implementation="flash_attention_2"
        )

        self.bos_token_id = 0
        self.eos_token_id = 1
        self.pad_token_id = 2

        self.config.bos_token_id = self.bos_token_id
        self.config.eos_token_id = self.eos_token_id
        self.config.pad_token_id = self.pad_token_id
        self.config._attn_implementation ="flash_attention_2"
        self.config.n_discrete_size = self.n_discrete_size
        self.config.bone_per_token = self.bone_per_token
        self.config.cond_length = self.cond_length

        self.config.word_embed_proj_dim = self.config.hidden_size # 1024
        
       
        self.transformer = AutoModelForCausalLM.from_config(
            config=self.config, attn_implementation="flash_attention_2")
        
        self.cond_head_proj = nn.Linear(self.cond_dim, self.config.word_embed_proj_dim)
        self.cond_proj = nn.Linear(self.cond_dim, self.config.word_embed_proj_dim)

        self.eval()

    def detokenize(self, input_ids):
        # input_ids: torch.Tensor of shape (batch_size, seq_length)
        batch_size = input_ids.size(0)

        continuous_coors_list = []
        num_bones_list = []
        
        for i in range(batch_size):
            cur_ids = input_ids[i]  # Shape: (seq_length,)

            # Remove padding tokens
            cur_ids = cur_ids[cur_ids != self.pad_id]  # Shape: (effective_seq_length,)
        
            # Check if length is a multiple of 6 (2 joints * 3 coordinates)
            if cur_ids.numel() % 6 != 0:
                return None
                # raise ValueError(f"Invalid length of input_ids in sample {i}. It should be a multiple of 6.")

            num_bones = cur_ids.numel() // 6
            num_bones_list.append(num_bones)

            # Reshape into (num_bones, 6)
            bone_coords = cur_ids.view(num_bones, 6)  # Shape: (num_bones, 6)

            # Undiscretize the coordinates
            # Initialize tensor to hold bone coordinates
            bones_coors = torch.zeros((num_bones, 2, 3), dtype=torch.float16, device=cur_ids.device)

            for j in range(num_bones):
                bone_coord = bone_coords[j]  # Shape: (6,)

                # Split into two joints
                joint1_ids = bone_coord[:3]
                joint2_ids = bone_coord[3:]

                # Undiscretize joint coordinates
                joint1_coords = undiscretize(joint1_ids, self.coor_continuous_range[0], self.coor_continuous_range[1], self.n_discrete_size)
                joint2_coords = undiscretize(joint2_ids, self.coor_continuous_range[0], self.coor_continuous_range[1], self.n_discrete_size)

                # Assign to bones_coors
                bones_coors[j, 0, :] = joint1_coords
                bones_coors[j, 1, :] = joint2_coords

            continuous_coors_list.append(bones_coors)
        
        max_num_bones = max(num_bones_list)

        # Initialize the continuous_coors tensor with NaNs
        continuous_coors = torch.full(
            (batch_size, max_num_bones, 2, 3),
            float('nan'),
            dtype=torch.float16,
            device=input_ids.device
        )

        # Place the bones_coors into continuous_coors
        for i in range(batch_size):
            num_bones = num_bones_list[i]
            continuous_coors[i, :num_bones, :, :] = continuous_coors_list[i]

        return continuous_coors  # Shape: (batch_size, max_num_bones, 2, 3)


    # def forward(self, data_dict: dict, is_eval: bool = False) -> dict:
    #     return self.generate(data_dict)

    def process_point_feature(self, point_feature):
        
        encode_feature = torch.zeros(self.args.batchsize_per_gpu, self.cond_length, self.config.word_embed_proj_dim,
                                    device=self.cond_head_proj.weight.device, dtype=self.cond_head_proj.weight.dtype)
        encode_feature[:, 0] = self.cond_head_proj(point_feature[:, 0])
        shape_latents = self.point_encoder.to_shape_latents(point_feature[:, 1:])

        encode_feature[:, 1:] = self.cond_proj(shape_latents)
        
        return encode_feature

    @torch.no_grad()
    def generate(self, data_dict) -> dict:

        point_feature = self.point_encoder.encode_latents(data_dict["pc_normal"])
        processed_point_feature = self.process_point_feature(point_feature=point_feature)
        generate_length = self.max_length - self.cond_length
        net_device = next(self.parameters()).device
        outputs = torch.ones(self.args.batchsize_per_gpu, generate_length).long().to(net_device) * self.eos_token_id
        # batch x ntokens
        if self.args.num_beams is not None and "pc_normal" in data_dict:
            results = self.transformer.generate(
                inputs_embeds=processed_point_feature,
                max_new_tokens=generate_length,  # all faces plus two
                num_beams=self.args.num_beams,
                bos_token_id=self.bos_token_id,
                eos_token_id=self.eos_token_id,
                pad_token_id=self.pad_token_id,
            )
        else:
            results = self.transformer.generate(
                inputs_embeds = processed_point_feature,
                max_new_tokens = generate_length, # all faces plus two
                do_sample=True,
                top_k=50,
                top_p=0.95,
                bos_token_id = self.bos_token_id,
                eos_token_id = self.eos_token_id,
                pad_token_id = self.pad_token_id,
            )
        assert results.shape[1] <= generate_length # B x ID  bos is not included since it's predicted
        outputs[:, :results.shape[1]] = results
        # batch x ntokens ====> batch x ntokens x D
        outputs = outputs[:, 1: -1] # eos and bos removed

        outputs[outputs == self.bos_token_id] = self.pad_id
        outputs[outputs == self.eos_token_id] = self.pad_id
        outputs[outputs == self.pad_token_id] = self.pad_id

        outputs[outputs != self.pad_id] -= 3
        
        gen_joints = self.detokenize(outputs)

        return gen_joints